The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Acid-Base Equilibrium

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Acid-Base Equilibrium

  • We evaluated the use of the urinary anion gap (sodium plus potassium minus chloride) in assessing hyperchloremic metabolic acidosis in 38 patients with altered distal urinary acidification and in 8 patients with diarrhea [1].
  • In contrast, the anion gap was positive in all patients with altered urinary acidification, who were classified as having classic renal tubular acidosis (23 +/- 4.1 mmol per liter, 11 patients), hyperkalemic distal renal tubular acidosis (30 +/- 4.2, 12 patients), or selective aldosterone deficiency (39 +/- 4.2, 15 patients) [1].
  • In contrast, in 18 patients with phenformin-induced lactic acidosis, the increase in anion gap at admission was much greater than the decrease in bicarbonate [2].
  • The effect of a meat load on the renal handling of acid-base balance was studied in ten healthy subjects (GFR by inulin clearance = 98.5 +/- 8.14 ml.min-1.1.73 m-2) and in ten patients affected by chronic renal failure (CRF) (GFR = 39.9 +/- 5.3 ml.min-1.1.73 m-2) [3].
  • Thus, both the wide prediction interval and volume depletion (as reflected by blood urea nitrogen level) impair the usefulness of the anion gap as a screen for mixed acid-base disorders in patients with diabetic ketoacidosis [4].

Psychiatry related information on Acid-Base Equilibrium


High impact information on Acid-Base Equilibrium


Chemical compound and disease context of Acid-Base Equilibrium


Biological context of Acid-Base Equilibrium


Anatomical context of Acid-Base Equilibrium


Associations of Acid-Base Equilibrium with chemical compounds

  • At the time of admission, the mean serum concentration of sodium was 134.8 mmol (meq) per liter, that of chloride was 103.2 mmol per liter, and that of bicarbonate was 11.4 mmol per liter; the mean anion gap was 20.2 mmol per liter [10].
  • Mineralocorticoid plays a role in urinary acidification and acid-base balance, but the response of the inner medulla to aldosterone has not been elucidated [28].
  • The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection [29].
  • Lactate utilization for oxidative purposes and for the resynthesis of glucose is essential for the maintenance of acid-base balance [30].
  • Although Dronpa exists in an acid-base equilibrium, only the photoinduced protonated form shows the switching behavior [31].

Gene context of Acid-Base Equilibrium


Analytical, diagnostic and therapeutic context of Acid-Base Equilibrium


  1. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. Batlle, D.C., Hizon, M., Cohen, E., Gutterman, C., Gupta, R. N. Engl. J. Med. (1988) [Pubmed]
  2. Hyperchloremic acidosis during the recovery phase of diabetic ketosis. Oh, M.S., Carroll, H.J., Goldstein, D.A., Fein, I.A. Ann. Intern. Med. (1978) [Pubmed]
  3. Effect of an acute oral protein load on renal acidification in healthy humans and in patients with chronic renal failure. de Santo, N.G., Capasso, G., Malnic, G., Anastasio, P., Spitali, L., D'Angelo, A. J. Am. Soc. Nephrol. (1997) [Pubmed]
  4. Anion gap-bicarbonate relation in diabetic ketoacidosis. Paulson, W.D. Am. J. Med. (1986) [Pubmed]
  5. The effect of the monoamine oxidase inhibitor isocarboxazid on the canine metabolism of the cell-differentiating agent hexamethylene bisacetamide. Conley, B.A., Sewack, G.F., Egorin, M.J., Subramanyam, B., Page, J.G., Grieshaber, C.K. Cancer Chemother. Pharmacol. (1991) [Pubmed]
  6. Elevated CSF lactate in the Rett syndrome: cause or consequence? Lappalainen, R., Riikonen, R.S. Brain Dev. (1994) [Pubmed]
  7. Effects of total plasma protein concentration on plasma sodium, potassium and chloride measurements by an indirect ion selective electrode measuring system. Dimeski, G., Barnett, R.J. Critical care and resuscitation : journal of the Australasian Academy of Critical Care Medicine. (2005) [Pubmed]
  8. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Li, Y.P., Chen, W., Liang, Y., Li, E., Stashenko, P. Nat. Genet. (1999) [Pubmed]
  9. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Schultheis, P.J., Clarke, L.L., Meneton, P., Miller, M.L., Soleimani, M., Gawenis, L.R., Riddle, T.M., Duffy, J.J., Doetschman, T., Wang, T., Giebisch, G., Aronson, P.S., Lorenz, J.N., Shull, G.E. Nat. Genet. (1998) [Pubmed]
  10. The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. Wang, F., Butler, T., Rabbani, G.H., Jones, P.K. N. Engl. J. Med. (1986) [Pubmed]
  11. Iodide and negative anion gap. Fischman, R.A., Fairclough, G.F., Cheigh, J.S. N. Engl. J. Med. (1978) [Pubmed]
  12. Toxic effects of toluene: a new cause of high anion gap metabolic acidosis. Fischman, C.M., Oster, J.R. JAMA (1979) [Pubmed]
  13. Organic acids in ethylene glycol intoxication. Gabow, P.A., Clay, K., Sullivan, J.B., Lepoff, R. Ann. Intern. Med. (1986) [Pubmed]
  14. Identification of zeta-crystallin/NADPH:quinone reductase as a renal glutaminase mRNA pH response element-binding protein. Tang, A., Curthoys, N.P. J. Biol. Chem. (2001) [Pubmed]
  15. Reduced or absent serum anion gap as a marker of severe lithium carbonate intoxication. Kelleher, S.P., Raciti, A., Arbeit, L.A. Arch. Intern. Med. (1986) [Pubmed]
  16. D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Uribarri, J., Oh, M.S., Carroll, H.J. Medicine (Baltimore) (1998) [Pubmed]
  17. Effects of haemorrhagic hypotension on brain and liver metabolism in normotensive (WKY) and spontaneously hypertensive rats (SHR). Wennberg, E., Hagberg, H., Haljamäe, H., Johansson, B.B. J. Hypertens. (1983) [Pubmed]
  18. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. Hwang, J.J., Curthoys, N.P. J. Biol. Chem. (1991) [Pubmed]
  19. Vigorous medical management of acute fulminant hepatitis. Auslander, M.O., Gitnick, G.L. Arch. Intern. Med. (1977) [Pubmed]
  20. Hypoxemic resuscitation in newborn piglets: recovery of somatosensory evoked potentials, hypoxanthine, and acid-base balance. Feet, B.A., Medbö, S., Rootwelt, T., Ganes, T., Saugstad, O.D. Pediatr. Res. (1998) [Pubmed]
  21. Central vagal control of fentanyl-induced bradycardia during halothane anesthesia. Reitan, J.A., Stengert, K.B., Wymore, M.L., Martucci, R.W. Anesth. Analg. (1978) [Pubmed]
  22. Cardiovascular response during hemodialysis and hemofiltration: thermal, membrane, and catecholamine influences. Fox, S.D., Henderson, L.W. Blood Purif. (1993) [Pubmed]
  23. A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application. Niikura, K., Takeshita, N., Takano, M. J. Bone Miner. Res. (2005) [Pubmed]
  24. Cerebral blood flow in cats after an acute hypertensive insult with damage to the blood-brain barrier. Pannier, J.L., Leusen, I. Stroke (1975) [Pubmed]
  25. Aldosterone inhibits HCO absorption via a nongenomic pathway in medullary thick ascending limb. Good, D.W., George, T., Watts, B.A. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
  26. Effect of valproate on renal metabolism in the intact dog. Rengel-Aranda, M., Gougoux, A., Vinay, P., Lopez-Novoa, J.M. Kidney Int. (1988) [Pubmed]
  27. The effect of metabolic acidosis on the synthesis and turnover of rat renal phosphate-dependent glutaminase. Tong, J., Harrison, G., Curthoys, N.P. Biochem. J. (1986) [Pubmed]
  28. Effect of selective aldosterone deficiency on acidification in nephron segments of the rat inner medulla. DuBose, T.D., Caflisch, C.R. J. Clin. Invest. (1988) [Pubmed]
  29. The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Day, N.P., Phu, N.H., Bethell, D.P., Mai, N.T., Chau, T.T., Hien, T.T., White, N.J. Lancet (1996) [Pubmed]
  30. Lactate homeostasis and lactic acidosis. Kreisberg, R.A. Ann. Intern. Med. (1980) [Pubmed]
  31. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., Hofkens, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  32. Intercalated cell H+/OH- transporter expression is reduced in Slc26a4 null mice. Kim, Y.H., Verlander, J.W., Matthews, S.W., Kurtz, I., Shin, W., Weiner, I.D., Everett, L.A., Green, E.D., Nielsen, S., Wall, S.M. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  33. Role of iNOS and eNOS in modulating proximal tubule transport and acid-base balance. Wang, T. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
  34. Identification of carbonic anhydrase IV and VI mRNA expression in human pancreas and salivary glands. Fujikawa-Adachi, K., Nishimori, I., Sakamoto, S., Morita, M., Onishi, S., Yonezawa, S., Hollingsworth, M.A. Pancreas (1999) [Pubmed]
  35. Regulation of the insulin-like growth factor system by acute acidosis. Bereket, A., Wilson, T.A., Kolasa, A.J., Fan, J., Lang, C.H. Endocrinology (1996) [Pubmed]
  36. Cell type-specific and developmentally regulated expression of the AE1 anion exchanger in the chicken chorioallantoic membrane. Gabrielli, M.G., Cox, J.V., Materazzi, G., Menghi, G. Histochem. Cell Biol. (2004) [Pubmed]
  37. Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. Abe, J., Suzuki, H., Notoya, M., Yamamoto, T., Hirose, S. J. Biol. Chem. (1999) [Pubmed]
  38. The influence of thyroid hormone replacement in a porcine brain death model. Schwartz, I., Bird, S., Lotz, Z., Innes, C.R., Hickman, R. Transplantation (1993) [Pubmed]
  39. Immunofluorescent imaging of beta 1- and beta 2-adrenergic receptors in rat kidney. Boivin, V., Jahns, R., Gambaryan, S., Ness, W., Boege, F., Lohse, M.J. Kidney Int. (2001) [Pubmed]
  40. Early experience with continuous arteriovenous hemofiltration in critically ill pediatric patients. Leone, M.R., Jenkins, R.D., Golper, T.A., Alexander, S.R. Crit. Care Med. (1986) [Pubmed]
WikiGenes - Universities