The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Flurotyl     1,1,1-trifluoro-2-(2,2,2...

Synonyms: Indoklon, Flurothyl, Flurotilo, Flurotylum, Indoklon (TN), ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Flurothyl

 

Psychiatry related information on Flurothyl

  • We previously demonstrated that there is a significant increase of interstitial dopamine of neuronal origin in the rat striatum after electroconvulsive shock (ECS) but not after chemically (flurothyl) induced seizures [6].
  • Memory-enhancing low concentrations of flurothyl, applied after post-training amnesic treatment with carbon dioxide, reversed the carbon dioxide amnesia [7].
  • Strong flurothyl treatment (1.7% v/v for 8 min) produces retrograde amnesia in chicks when administered as long as 24 hr after one-trial avoidance training with a strongly aversive stimulus [8].
  • Flurothyl, a vapor with convulsive properties, had no pronounced effects on locomotor activity at subconvulsant concentrations [9].
 

High impact information on Flurothyl

 

Chemical compound and disease context of Flurothyl

 

Biological context of Flurothyl

 

Anatomical context of Flurothyl

  • The effect of convulsions induced by flurothyl on ribonucleic acid synthesis in rat cerebral cortex during the recovery phase [23].
  • To investigate this relationship between hippocampal mitotic activity and epileptogenesis, mice were given brain irradiation, focused mainly on the hippocampus, bilaterally, and were exposed to the flurothyl kindling model of epileptogenesis [19].
  • Increased mitotic activity in the dentate gyrus of the hippocampus of adult C57BL/6J mice exposed to the flurothyl kindling model of epileptogenesis [24].
  • In each condition, generalized seizure behaviours were elicited in C57BL/6 mice using flurothyl and classified as either "forebrain" (face and forelimb clonus) or "brainstem" (running/bouncing, treading, tonic extension) [25].
  • The lack of an effect of estradiol alone or estradiol followed by progesterone on flurothyl-induced seizures indicates that estradiol's effects on seizure susceptibility do not result from increased neuronal excitability throughout the brain, but rather involve action within the limbic system [26].
 

Associations of Flurothyl with other chemical compounds

 

Gene context of Flurothyl

  • Thus, we hypothesized that BDNF signaling pathways are altered by flurothyl-induced seizures [32].
  • METHODS: Using flurothyl gas inhalation, we examined seizure-induction latencies in Cln3-/- mice and wildtype (wt) controls at time points that represent late neonatal, immature, mature, and aged time points [33].
  • ZnT3-/- mice, which lack histochemically reactive zinc in synaptic vesicles, had slightly higher thresholds to seizures elicited by the GABA(A) antagonist, bicuculline, and no differences in seizure threshold were seen in response to pentylenetetrazol or flurothyl [34].
  • Enhanced seizure susceptibility to flurothyl and increased seizure-induced c-fos mRNA expression were reversed by pretreatment with L-threo-3, 4-dihydroxyphenylserine, which partially restores the NE content in Dbh -/- mice [35].
  • In flurothyl-induced seizures, CA deficient mice displayed longer latencies to the onset of both clonic and tonic-clonic seizures [36].
 

Analytical, diagnostic and therapeutic context of Flurothyl

References

  1. Correlation between extracellular glucose and seizure susceptibility in adult rats. Schwechter, E.M., Velísková, J., Velísek, L. Ann. Neurol. (2003) [Pubmed]
  2. Acute and chronic effects of hypoxia on the developing hippocampus. Owens, J., Robbins, C.A., Wenzel, H.J., Schwartzkroin, P.A. Ann. Neurol. (1997) [Pubmed]
  3. Effects of neonatal status epilepticus on rat brain development. Wasterlain, C.G. Neurology (1976) [Pubmed]
  4. Toxicity to heavy metals and relationship to seizure thresholds. Adler, M.W., Adler, C.H. Clin. Pharmacol. Ther. (1977) [Pubmed]
  5. Differential effects of low glucose concentrations on seizures and epileptiform activity in vivo and in vitro. Kirchner, A., Velísková, J., Velísek, L. Eur. J. Neurosci. (2006) [Pubmed]
  6. ECS-induced dopamine release: effects of electrode placement, anticonvulsant treatment, and stimulus intensity. McGarvey, K.A., Zis, A.P., Brown, E.E., Nomikos, G.G., Fibiger, H.C. Biol. Psychiatry (1993) [Pubmed]
  7. Memory performance after flurothyl treatment in rainbow trout. Riege, W.H., Cherkin, A. Psychopharmacologia. (1976) [Pubmed]
  8. Retrograde enhancement of memory by mild flurothyl treatment in the chick. Cherkin, A., Meinecke, R.O., Garman, M.W. Physiol. Behav. (1975) [Pubmed]
  9. Evaluation of 1,1,1-trichloroethane and flurothyl locomotor effects following diazepam treatment in mice. Wiley, J.L., Fagaldé, R.E., Bühler, K.G., LaVecchia, K.L., Balster, R.L. Pharmacol. Biochem. Behav. (2002) [Pubmed]
  10. Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells. Villeneuve, N., Ben-Ari, Y., Holmes, G.L., Gaiarsa, J.L. Ann. Neurol. (2000) [Pubmed]
  11. Repeated generalized seizures induce time-dependent changes in the behavioral seizure response independent of continued seizure induction. Samoriski, G.M., Applegate, C.D. J. Neurosci. (1997) [Pubmed]
  12. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. Ingvar, M., Folbegrova, J., Siesjö, B.K. J. Cereb. Blood Flow Metab. (1987) [Pubmed]
  13. Interactions between folates and carbamazepine or valproate in the rat. Smith, D.B., Carl, G.F. Neurology (1982) [Pubmed]
  14. The effects of chronic norepinephrine transporter inactivation on seizure susceptibility in mice. Ahern, T.H., Javors, M.A., Eagles, D.A., Martillotti, J., Mitchell, H.A., Liles, L.C., Weinshenker, D. Neuropsychopharmacology (2006) [Pubmed]
  15. Regional neural activity within the substantia nigra during peri-ictal flurothyl generalized seizure stages. Velísková, J., Miller, A.M., Nunes, M.L., Brown, L.L. Neurobiol. Dis. (2005) [Pubmed]
  16. Sex-specific control of flurothyl-induced tonic-clonic seizures by the substantia nigra pars reticulata during development. Velísek, L., Velísková, J., Giorgi, F.S., Moshé, S.L. Exp. Neurol. (2006) [Pubmed]
  17. U50,488, a highly selective kappa opioid: anticonvulsant profile in rats. Tortella, F.C., Robles, L., Holaday, J.W. J. Pharmacol. Exp. Ther. (1986) [Pubmed]
  18. NMR-based identification of intra- and extracellular compartments of the brain Pi peak. Gilboe, D.D., Kintner, D.B., Anderson, M.E., Fitzpatrick, J.H. J. Neurochem. (1998) [Pubmed]
  19. The effects of brain-irradiation-induced decreases in hippocampal mitotic activity on flurothyl-induced epileptogenesis in adult C57BL/6J mice. Ferland, R.J., Williams, J.P., Gross, R.A., Applegate, C.D. Exp. Neurol. (2003) [Pubmed]
  20. Selective impairment of GABAergic synaptic transmission in the flurothyl model of neonatal seizures. Isaeva, E., Isaev, D., Khazipov, R., Holmes, G.L. Eur. J. Neurosci. (2006) [Pubmed]
  21. Flurothyl-induced convulsions delay the onset of sexual maturation in the female rat. Wilkinson, M., Bhanot, R., Pincock, J.A., Donald, L. J. Endocrinol. (1982) [Pubmed]
  22. Regional and age specific effects of zolpidem microinfusions in the substantia nigra on seizures. Velísková, J., Löscher, W., Moshé, S.L. Epilepsy Res. (1998) [Pubmed]
  23. The effect of convulsions induced by flurothyl on ribonucleic acid synthesis in rat cerebral cortex during the recovery phase. Wynter, C.V., Ioannou, P., Mathias, A.P. Biochem. J. (1975) [Pubmed]
  24. Increased mitotic activity in the dentate gyrus of the hippocampus of adult C57BL/6J mice exposed to the flurothyl kindling model of epileptogenesis. Ferland, R.J., Gross, R.A., Applegate, C.D. Neuroscience (2002) [Pubmed]
  25. Regional analysis of the spatial patterns of Fos induction in brain following flurothyl kindling. Samoriski, G.M., Piekut, D.T., Applegate, C.D. Neuroscience (1998) [Pubmed]
  26. Estradiol facilitates kainic acid-induced, but not flurothyl-induced, behavioral seizure activity in adult female rats. Woolley, C.S. Epilepsia (2000) [Pubmed]
  27. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Nevander, G., Ingvar, M., Auer, R., Siesjö, B.K. Ann. Neurol. (1985) [Pubmed]
  28. Age-related substantia nigra-mediated seizure facilitation. Okada, R., Moshe, S.L., Wong, B.Y., Sperber, E.F., Zhao, D.Y. Exp. Neurol. (1986) [Pubmed]
  29. Desflurane is a trigger of malignant hyperthermia in susceptible swine. Wedel, D.J., Iaizzo, P.A., Milde, J.H. Anesthesiology (1991) [Pubmed]
  30. Differential modulatory actions of the volatile convulsant flurothyl and its anesthetic isomer at inhibitory ligand-gated ion channels. Krasowski, M.D. Neuropharmacology (2000) [Pubmed]
  31. Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. Wakamori, M., Ikemoto, Y., Akaike, N. J. Neurophysiol. (1991) [Pubmed]
  32. Persistent regional increases in brain-derived neurotrophic factor in the flurothyl model of epileptogenesis are dependent upon the kindling status of the animal. Mhyre, T.R., Applegate, C.D. Neuroscience (2003) [Pubmed]
  33. Altered flurothyl seizure induction latency, phenotype, and subsequent mortality in a mouse model of juvenile neuronal ceroid lipofuscinosis/batten disease. Kriscenski-Perry, E., Applegate, C.D., Serour, A., Mhyre, T.R., Leonardo, C.C., Pearce, D.A. Epilepsia (2002) [Pubmed]
  34. Seizures and neuronal damage in mice lacking vesicular zinc. Cole, T.B., Robbins, C.A., Wenzel, H.J., Schwartzkroin, P.A., Palmiter, R.D. Epilepsy Res. (2000) [Pubmed]
  35. Norepinephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. Szot, P., Weinshenker, D., White, S.S., Robbins, C.A., Rust, N.C., Schwartzkroin, P.A., Palmiter, R.D. J. Neurosci. (1999) [Pubmed]
  36. Reduced susceptibility to seizures in carbonic anhydrase II deficient mutant mice. Velísek, L., Moshé, S.L., Xu, S.G., Cammer, W. Epilepsy Res. (1993) [Pubmed]
  37. Chronic carbamazepine treatment in the rat: efficacy, toxicity, and effect on plasma and tissue folate concentrations. Carl, G.F., Smith, M.L. Epilepsia (1989) [Pubmed]
  38. Sustained seizures cause circumscribed cerebral changes in glial fibrillary acidic protein, neurofilament and laminin immunofluorescence. Eriksdotter-Nilsson, M., Björklund, H., Dahl, D., Olson, L., Ingvar, M. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1987) [Pubmed]
  39. Anti-kindling effect of slow repetitive transcranial magnetic stimulation in rats. Anschel, D.J., Pascual-Leone, A., Holmes, G.L. Neurosci. Lett. (2003) [Pubmed]
  40. The nature and timing of excitotoxic neuronal necrosis in the cerebral cortex, hippocampus and thalamus due to flurothyl-induced status epilepticus. Ingvar, M., Morgan, P.F., Auer, R.N. Acta Neuropathol. (1988) [Pubmed]
 
WikiGenes - Universities