The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Bhr1  -  bronchial hyperresponsiveness 1

Mus musculus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bhr1


High impact information on Bhr1


Chemical compound and disease context of Bhr1


Biological context of Bhr1


Anatomical context of Bhr1


Associations of Bhr1 with chemical compounds


Regulatory relationships of Bhr1


Other interactions of Bhr1


Analytical, diagnostic and therapeutic context of Bhr1


  1. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. Gonzalo, J.A., Lloyd, C.M., Wen, D., Albar, J.P., Wells, T.N., Proudfoot, A., Martinez-A, C., Dorf, M., Bjerke, T., Coyle, A.J., Gutierrez-Ramos, J.C. J. Exp. Med. (1998) [Pubmed]
  2. T helper-2 immunity regulates bronchial hyperresponsiveness in eosinophil-associated gastrointestinal disease in mice. Forbes, E., Smart, V.E., D'Aprile, A., Henry, P., Yang, M., Matthaei, K.I., Rothenberg, M.E., Foster, P.S., Hogan, S.P. Gastroenterology (2004) [Pubmed]
  3. Resolution of bronchial hyperresponsiveness and pulmonary inflammation is associated with IL-3 and tissue leukocyte apoptosis. Lloyd, C.M., Gonzalo, J.A., Nguyen, T., Delaney, T., Tian, J., Oettgen, H., Coyle, A.J., Gutierrez-Ramos, J.C. J. Immunol. (2001) [Pubmed]
  4. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. Stassen, M., Arnold, M., Hültner, L., Müller, C., Neudörfl, C., Reineke, T., Schmitt, E. J. Immunol. (2000) [Pubmed]
  5. IL-5 and eosinophils are essential for the development of airway hyperresponsiveness following acute respiratory syncytial virus infection. Schwarze, J., Cieslewicz, G., Hamelmann, E., Joetham, A., Shultz, L.D., Lamers, M.C., Gelfand, E.W. J. Immunol. (1999) [Pubmed]
  6. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. De Sanctis, G.T., Merchant, M., Beier, D.R., Dredge, R.D., Grobholz, J.K., Martin, T.R., Lander, E.S., Drazen, J.M. Nat. Genet. (1995) [Pubmed]
  7. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. Krinzman, S.J., De Sanctis, G.T., Cernadas, M., Mark, D., Wang, Y., Listman, J., Kobzik, L., Donovan, C., Nassr, K., Katona, I., Christiani, D.C., Perkins, D.L., Finn, P.W. J. Clin. Invest. (1996) [Pubmed]
  8. Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. Sawicka, E., Zuany-Amorim, C., Manlius, C., Trifilieff, A., Brinkmann, V., Kemeny, D.M., Walker, C. J. Immunol. (2003) [Pubmed]
  9. Inhaled fluticasone propionate reduces concentration of Mycoplasma pneumoniae, inflammation, and bronchial hyperresponsiveness in lungs of mice. Chu, H.W., Campbell, J.A., Rino, J.G., Harbeck, R.J., Martin, R.J. J. Infect. Dis. (2004) [Pubmed]
  10. alpha4 integrin-dependent eotaxin induction of bronchial hyperresponsiveness and eosinophil migration in interleukin-5 transgenic mice. Hisada, T., Hellewell, P.G., Teixeira, M.M., Malm, M.G., Salmon, M., Huang, T.J., Chung, K.F. Am. J. Respir. Cell Mol. Biol. (1999) [Pubmed]
  11. Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. Nath, P., Leung, S.Y., Williams, A., Noble, A., Chakravarty, S.D., Luedtke, G.R., Medicherla, S., Higgins, L.S., Protter, A., Chung, K.F. Eur. J. Pharmacol. (2006) [Pubmed]
  12. Interleukin 9: a candidate gene for asthma. Nicolaides, N.C., Holroyd, K.J., Ewart, S.L., Eleff, S.M., Kiser, M.B., Dragwa, C.R., Sullivan, C.D., Grasso, L., Zhang, L.Y., Messler, C.J., Zhou, T., Kleeberger, S.R., Buetow, K.H., Levitt, R.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  13. Transgenic overexpression of beta(2)-adrenergic receptors in airway smooth muscle alters myocyte function and ablates bronchial hyperreactivity. McGraw, D.W., Forbes, S.L., Kramer, L.A., Witte, D.P., Fortner, C.N., Paul, R.J., Liggett, S.B. J. Biol. Chem. (1999) [Pubmed]
  14. The role of Mac-1 (CD11b/CD18) in antigen-induced airway eosinophilia in mice. Kanwar, S., Smith, C.W., Shardonofsky, F.R., Burns, A.R. Am. J. Respir. Cell Mol. Biol. (2001) [Pubmed]
  15. Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Eum, S.Y., Hailé, S., Lefort, J., Huerre, M., Vargaftig, B.B. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. Patel, M., Xu, D., Kewin, P., Choo-Kang, B., McSharry, C., Thomson, N.C., Liew, F.Y. J. Immunol. (2005) [Pubmed]
  17. Tc2 cells respond to soluble antigen in the respiratory tract and induce lung eosinophilia and bronchial hyperresponsiveness. Sawicka, E., Noble, A., Walker, C., Kemeny, D.M. Eur. J. Immunol. (2004) [Pubmed]
  18. Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. Cataldo, D.D., Tournoy, K.G., Vermaelen, K., Munaut, C., Foidart, J.M., Louis, R., Noël, A., Pauwels, R.A. Am. J. Pathol. (2002) [Pubmed]
  19. Cysteinyl-leukotrienes partly mediate eotaxin-induced bronchial hyperresponsiveness and eosinophilia in IL-5 transgenic mice. Hisada, T., Salmon, M., Nasuhara, Y., Chung, K.F. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  20. The role of the mast cell in the pathophysiology of asthma. Bradding, P., Walls, A.F., Holgate, S.T. J. Allergy Clin. Immunol. (2006) [Pubmed]
  21. Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infection in a murine model. Martin, R.J., Chu, H.W., Honour, J.M., Harbeck, R.J. Am. J. Respir. Cell Mol. Biol. (2001) [Pubmed]
  22. Activated protein C inhibits bronchial hyperresponsiveness and Th2 cytokine expression in mice. Yuda, H., Adachi, Y., Taguchi, O., Gabazza, E.C., Hataji, O., Fujimoto, H., Tamaki, S., Nishikubo, K., Fukudome, K., D'Alessandro-Gabazza, C.N., Maruyama, J., Izumizaki, M., Iwase, M., Homma, I., Inoue, R., Kamada, H., Hayashi, T., Kasper, M., Lambrecht, B.N., Barnes, P.J., Suzuki, K. Blood (2004) [Pubmed]
  23. Immunomodulatory role of C10 chemokine in a murine model of allergic bronchopulmonary aspergillosis. Hogaboam, C.M., Gallinat, C.S., Taub, D.D., Strieter, R.M., Kunkel, S.L., Lukacs, N.W. J. Immunol. (1999) [Pubmed]
  24. Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Ewart, S.L., Kuperman, D., Schadt, E., Tankersley, C., Grupe, A., Shubitowski, D.M., Peltz, G., Wills-Karp, M. Am. J. Respir. Cell Mol. Biol. (2000) [Pubmed]
  25. Evidence that cyclosporin A and dexamethasone inhibit allergic airway eosinophilic inflammation via suppression of interleukin-5 synthesis by T cells. Nakata, A., Kaminuma, O., Mori, A., Ogawa, K., Kikkawa, H., Naito, K., Ikezawa, K., Suko, M., Okudaira, H. Br. J. Pharmacol. (1998) [Pubmed]
  26. The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Tanaka, H., Masuda, T., Tokuoka, S., Komai, M., Nagao, K., Takahashi, Y., Nagai, H. Inflamm. Res. (2001) [Pubmed]
  27. IL-12 Contributes to Allergen-Induced Airway Inflammation in Experimental Asthma. Meyts, I., Hellings, P.W., Hens, G., Vanaudenaerde, B.M., Verbinnen, B., Heremans, H., Matthys, P., Bullens, D.M., Overbergh, L., Mathieu, C., De Boeck, K., Ceuppens, J.L. J. Immunol. (2006) [Pubmed]
  28. Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma. Hertz, M., Mahalingam, S., Dalum, I., Klysner, S., Mattes, J., Neisig, A., Mouritsen, S., Foster, P.S., Gautam, A. J. Immunol. (2001) [Pubmed]
  29. Biological effects of diesel exhaust particles (DEP). III. Pathogenesis of asthma like symptoms in mice. Sagai, M., Furuyama, A., Ichinose, T. Free Radic. Biol. Med. (1996) [Pubmed]
  30. A report from the International Eosinophil Society: eosinophils in a tug of war. Lacy, P., Weller, P.F., Moqbel, R. J. Allergy Clin. Immunol. (2001) [Pubmed]
  31. Monocyte chemotactic and activating factor/monocyte chemoattractant protein (MCAF/MCP-1) in bronchoalveolar lavage fluid from patients with atopic asthma and chronic bronchitis. Jahnz-Rózyk, K.M., Kuna, P., Pirozyńska, E. Journal of investigational allergology & clinical immunology : official organ of the International Association of Asthmology (INTERASMA) and Sociedad Latinoamericana de Alergia e Inmunología. (1997) [Pubmed]
WikiGenes - Universities