The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Lpar1  -  lysophosphatidic acid receptor 1

Rattus norvegicus

Synonyms: Edg2, Gpcr91, LPA receptor 1, LPA-1, Lpa1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Edg2

  • Pertussis toxin, the LPA1/LPA3 receptor-selective antagonist dioctylglycerol pyrophosphate, the myristoylated inhibitory pseudosubstrate peptide of protein kinase A (PKI), Wortmannin and PD98059 abolished the neurite-promoting effect. cPA elicited a sustained activation of extracellular signal-related kinases (ERK) 1/2 and Akt [1].
  • These results suggest that LPA receptor signaling may play an important role in neuroprotection in retinal ischemia-reperfusion injury [2].
  • We then examined the biological activity of 2-arachidonoyl LPA and compared it with that of 2-AG using neuroblastoma x glioma hybrid NG108-15 cells which express both the LPA receptor and cannabinoid CB1 receptor [3].
  • The role of H2O2 and the lactoperoxidase-SCN(-)-H2O2 system on the interaction between two bacteria originating from human dental plaque, Streptococcus rattus (mutans) BHT and Streptococcus mitior LPA-1, grown on human teeth in an artificial mouth [4].
 

High impact information on Edg2

  • Serum-induced membrane depolarization in quiescent fibroblasts: activation of a chloride conductance through the G protein-coupled LPA receptor [5].
  • Overexpression of functional epitope-tagged LPA1/VZG-1 protein decreases SC apoptosis in response to serum withdrawal [6].
  • In the presence of N-palmitoyl L-serine phosphoric acid, a competitive inhibitor for the endothelial LPA receptor, loss of confluence in vitro and the hydraulic permeability caused by 5 microM LPA in vivo were abolished [7].
  • Thus, the multiple effects of LPA in Schwann cells (actin reorganization, survival, and myelin gene expression) appear to be mediated through the different G protein-dependent pathways activated by the LPA receptor [8].
  • Oligodendroglial expression of Edg-2 receptor: developmental analysis and pharmacological responses to lysophosphatidic acid [9].
 

Biological context of Edg2

 

Anatomical context of Edg2

 

Associations of Edg2 with chemical compounds

  • The levels of mRNA of LPA1 and S1P receptors was reduced by overnight exposure to S1P, while the same treatment significantly up-regulated the level of LPA3 mRNA [17].
  • We have now identified two splice variants of Edg-2 mRNA in rat brain that encode two receptor isoforms differing by a stretch of 18 amino acids in the NH2-terminal extracellular tail of the receptor [11].
  • First, the RGDS peptide, which blocks cell matrix-induced integrin clustering and cytoskeletal rearrangement, reduced the number of cells containing LPA1 in the nucleus [18].
  • In initial 48 h experiments, teeth were inoculated with Streptococcus rattus BHT or 'Streptococcus mitior' LPA-1 in pure culture and provided with 1% (w/v) glucose for 1 h every 6 h [19].
  • Suramin, an LPA receptor antagonist, abolished the induction of preproET-1 mRNA by LPA [20].
 

Regulatory relationships of Edg2

 

Other interactions of Edg2

  • This restricted olygodendrocytes localization was confirmed by the absence of cellular colocalization of Edg-2 and glial fibrillary acidic protein, an astrocytic marker [10].
  • Initially, we observed that OECs expressed the genes for LPA1, LPA2, and LPA3 receptors [21].
 

Analytical, diagnostic and therapeutic context of Edg2

References

  1. Cyclic phosphatidic acid elicits neurotrophin-like actions in embryonic hippocampal neurons. Fujiwara, Y., Sebök, A., Meakin, S., Kobayashi, T., Murakami-Murofushi, K., Tigyi, G. J. Neurochem. (2003) [Pubmed]
  2. EDG receptors as a potential therapeutic target in retinal ischemia-reperfusion injury. Savitz, S.I., Dhallu, M.S., Malhotra, S., Mammis, A., Ocava, L.C., Rosenbaum, P.S., Rosenbaum, D.M. Brain Res. (2006) [Pubmed]
  3. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Nakane, S., Oka, S., Arai, S., Waku, K., Ishima, Y., Tokumura, A., Sugiura, T. Arch. Biochem. Biophys. (2002) [Pubmed]
  4. The role of H2O2 and the lactoperoxidase-SCN(-)-H2O2 system on the interaction between two bacteria originating from human dental plaque, Streptococcus rattus (mutans) BHT and Streptococcus mitior LPA-1, grown on human teeth in an artificial mouth. Donoghue, H.D., Perrons, C.J., Hudson, D.E. Arch. Oral Biol. (1985) [Pubmed]
  5. Serum-induced membrane depolarization in quiescent fibroblasts: activation of a chloride conductance through the G protein-coupled LPA receptor. Postma, F.R., Jalink, K., Hengeveld, T., Bot, A.G., Alblas, J., de Jonge, H.R., Moolenaar, W.H. EMBO J. (1996) [Pubmed]
  6. Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Weiner, J.A., Chun, J. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. Hydrolysis of phosphatidylserine-exposing red blood cells by secretory phospholipase A2 generates lysophosphatidic acid and results in vascular dysfunction. Neidlinger, N.A., Larkin, S.K., Bhagat, A., Victorino, G.P., Kuypers, F.A. J. Biol. Chem. (2006) [Pubmed]
  8. Lysophosphatidic acid promotes survival and differentiation of rat Schwann cells. Li, Y., Gonzalez, M.I., Meinkoth, J.L., Field, J., Kazanietz, M.G., Tennekoon, G.I. J. Biol. Chem. (2003) [Pubmed]
  9. Oligodendroglial expression of Edg-2 receptor: developmental analysis and pharmacological responses to lysophosphatidic acid. Stankoff, B., Barron, S., Allard, J., Barbin, G., Noël, F., Aigrot, M.S., Premont, J., Sokoloff, P., Zalc, B., Lubetzki, C. Mol. Cell. Neurosci. (2002) [Pubmed]
  10. A rat G protein-coupled receptor selectively expressed in myelin-forming cells. Allard, J., Barrón, S., Diaz, J., Lubetzki, C., Zalc, B., Schwartz, J.C., Sokoloff, P. Eur. J. Neurosci. (1998) [Pubmed]
  11. Edg-2 in myelin-forming cells: isoforms, genomic mapping, and exclusion in Charcot-Marie-Tooth disease. Allard, J., Barron, S., Trottier, S., Cervera, P., Daumas-Duport, C., Leguern, E., Brice, A., Schwartz, J.C., Sokoloff, P. Glia (1999) [Pubmed]
  12. Regulation of lysophosphatidic acid receptor-stimulated response by G-protein-coupled receptor kinase-2 and beta-arrestin1 in FRTL-5 rat thyroid cells. Iacovelli, L., Capobianco, L., D'Ancona, G.M., Picascia, A., De Blasi, A. J. Endocrinol. (2002) [Pubmed]
  13. Characterization of sphingosine 1-phosphate-induced actions and its signaling pathways in rat hepatocytes. Im, D.S., Fujioka, T., Katada, T., Kondo, Y., Ui, M., Okajima, F. Am. J. Physiol. (1997) [Pubmed]
  14. Edg2 receptor functionality: gialpha1 coexpression and fusion protein studies. McAllister, G., Stanton, J.A., Salim, K., Handford, E.J., Beer, M.S. Mol. Pharmacol. (2000) [Pubmed]
  15. Edg2 receptor distribution in adult rat brain. Handford, E.J., Smith, D., Hewson, L., McAllister, G., Beer, M.S. Neuroreport (2001) [Pubmed]
  16. Lysophosphatidic acid stimulates cell proliferation in rat chondrocytes. Kim, M.K., Lee, H.Y., Park, K.S., Shin, E.H., Jo, S.H., Yun, J., Lee, S.W., Yoo, Y.H., Lee, Y.S., Baek, S.H., Bae, Y.S. Biochem. Pharmacol. (2005) [Pubmed]
  17. Microglial activation state and lysophospholipid acid receptor expression. Tham, C.S., Lin, F.F., Rao, T.S., Yu, N., Webb, M. Int. J. Dev. Neurosci. (2003) [Pubmed]
  18. Integrin signalling regulates the nuclear localization and function of the lysophosphatidic acid receptor-1 (LPA1) in mammalian cells. Waters, C.M., Saatian, B., Moughal, N.A., Zhao, Y., Tigyi, G., Natarajan, V., Pyne, S., Pyne, N.J. Biochem. J. (2006) [Pubmed]
  19. A laboratory microcosm (artificial mouth) for the culture and continuous pH measurement of oral bacteria on surfaces. Hudson, D.E., Donoghue, H.D., Perrons, C.J. J. Appl. Bacteriol. (1986) [Pubmed]
  20. Upregulation of endothelin-1 production by lysophosphatidic acid in rat aortic endothelial cells. Chua, C.C., Hamdy, R.C., Chua, B.H. Biochim. Biophys. Acta (1998) [Pubmed]
  21. Lysophosphatidic acid regulates the proliferation and migration of olfactory ensheathing cells in vitro. Yan, H., Lu, D., Rivkees, S.A. Glia (2003) [Pubmed]
  22. Lysophosphatidic acid induces process retraction in CG-4 line oligodendrocytes and oligodendrocyte precursor cells but not in differentiated oligodendrocytes. Dawson, J., Hotchin, N., Lax, S., Rumsby, M. J. Neurochem. (2003) [Pubmed]
  23. Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. Hilal-Dandan, R., Means, C.K., Gustafsson, A.B., Morissette, M.R., Adams, J.W., Brunton, L.L., Heller Brown, J. J. Mol. Cell. Cardiol. (2004) [Pubmed]
  24. Evidence for biological effects of exogenous LPA on rat primary afferent and spinal cord neurons. Elmes, S.J., Millns, P.J., Smart, D., Kendall, D.A., Chapman, V. Brain Res. (2004) [Pubmed]
  25. Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Tabuchi, S., Kume, K., Aihara, M., Shimizu, T. Neurochem. Res. (2000) [Pubmed]
 
WikiGenes - Universities