The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Ambp  -  alpha 1 microglobulin/bikunin

Mus musculus

Synonyms: AI194774, ASPI, HI-30, Intin4, Itil, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ambp

  • These results indicate that endogenous UTI is protective against acute lung injury induced by bacterial endotoxin, at least partly, via the antioxidative properties [1].
  • Our results show that the UTI receptors of some tumor cells have a possible role in modulating plasmin activity on the cell surface and prevention of tumor cell invasion and metastasis (H. Kobayashi et al., J. Biol. Chem., 269; 20642-20647, 1994) [2].
  • UTI can bind easily to its receptors on various types of tumor cells (human ovarian cancer HOC-I cells, human choriocarcinoma SMT-cc1 cells, and murine Lewis lung carcinoma 3LL cells) [2].
  • The adherence of uropathogenic Escherichia coli to the urothelial surface, a critical first step in the pathogenesis of urinary tract infection (UTI), is controlled by three key elements: E. coli adhesins, host receptors, and host defense mechanisms [3].
  • A novel murine model of UTI reinfection was developed using the prototypic cystitis UPEC isolate NU14 harboring a plasmid encoding OVA as a unique antigenic marker [4].
 

Psychiatry related information on Ambp

 

High impact information on Ambp

  • This study examined the change in susceptibility to urinary tract infection (UTI) after deletion of the murine interleukin 8 receptor homologue (mIL-8Rh) [6].
  • The experimental UTI model demonstrated that IL-8R-dependent mechanisms control the urinary tract defense, and that neutrophils are essential host effector cells [6].
  • UTI derivatized with biotin or FITC was taken up by tumor cells in a dose-dependent manner [2].
  • This cell association was inhibited with a monoclonal antibody D1, which specifically recognizes NH2 terminus (domain I) of UTI [2].
  • The present study was undertaken to determine whether highly purified human urinary trypsin inhibitor (UTI) efficiently inhibits the soluble and the tumor cell receptor-bound plasmin [7].
 

Chemical compound and disease context of Ambp

 

Biological context of Ambp

 

Anatomical context of Ambp

  • After LPS (1 mg/kg) challenge, UTI (-/-) mice revealed a significant elevation of plasma fibrinogen and fibrinogen/fibrin degradation products and a decrease in white blood cell counts compared with WT mice [16].
  • The protein levels of proinflammatory mediators, such as macrophage chemoattractant protein (MCP)-1 in the lungs, MCP-1 and keratinocyte chemoattractant (KC) in the kidneys, and interleukin-1beta, macrophage inflammatory protein-2, MCP-1, and KC in the liver, were significantly greater in UTI (-/-) mice than in WT mice after LPS challenge [16].
  • TNF-alpha production by monocytes stimulated with LPS (100 ng/ml) was inhibited by UTI at concentrations higher than 100 U/ml [13].
  • The number of naturally ovulated oocytes from UTI-deficient mice was greatly reduced compared with that from wild-type mice [14].
  • Using a modified Boyden chamber and an artificial basement membrane, Matrigel, it was found that UTI, but not alpha 2AP or alpha 2M, can inhibit HOC-I and SMT-ccl cells invasion in vitro [7].
 

Associations of Ambp with chemical compounds

 

Regulatory relationships of Ambp

 

Other interactions of Ambp

 

Analytical, diagnostic and therapeutic context of Ambp

References

  1. Antioxidative role of urinary trypsin inhibitor in acute lung injury induced by lipopolysaccharide. Inoue, K., Takano, H., Yanagisawa, R., Sakurai, M., Shimada, A., Sato, H., Kato, Y., Yoshikawa, T. Int. J. Mol. Med. (2005) [Pubmed]
  2. Inhibition of tumor cell invasion through matrigel by a peptide derived from the domain II region in urinary trypsin inhibition. Kobayashi, H., Gotoh, J., Kanayama, N., Hirashima, Y., Terao, T., Sugino, D. Cancer Res. (1995) [Pubmed]
  3. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. Pak, J., Pu, Y., Zhang, Z.T., Hasty, D.L., Wu, X.R. J. Biol. Chem. (2001) [Pubmed]
  4. Antigen-specific responses accelerate bacterial clearance in the bladder. Thumbikat, P., Waltenbaugh, C., Schaeffer, A.J., Klumpp, D.J. J. Immunol. (2006) [Pubmed]
  5. Nullification of a positive correlation between urinary levels of alpha 1-microglobulin and ulinastatin by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Shikimi, T., Inagaki, T., Kaku, K., Ishino, H., Okunishi, H., Takaori, S. Psychoneuroendocrinology (1997) [Pubmed]
  6. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. Frendéus, B., Godaly, G., Hang, L., Karpman, D., Lundstedt, A.C., Svanborg, C. J. Exp. Med. (2000) [Pubmed]
  7. Inhibition of the soluble and the tumor cell receptor-bound plasmin by urinary trypsin inhibitor and subsequent effects on tumor cell invasion and metastasis. Kobayashi, H., Shinohara, H., Takeuchi, K., Itoh, M., Fujie, M., Saitoh, M., Terao, T. Cancer Res. (1994) [Pubmed]
  8. Characterization of the cellular binding site for the urinary trypsin inhibitor. Kobayashi, H., Gotoh, J., Fujie, M., Terao, T. J. Biol. Chem. (1994) [Pubmed]
  9. Estrogen increases menopausal host susceptibility to experimental ascending urinary-tract infection. Curran, E.M., Tassell, A.H., Judy, B.M., Nowicki, B., Montgomery-Rice, V., Estes, D.M., Nowicki, S. J. Infect. Dis. (2007) [Pubmed]
  10. Antimicrobial activity of intraurethrally administered probiotic Lactobacillus casei in a murine model of Escherichia coli urinary tract infection. Asahara, T., Nomoto, K., Watanuki, M., Yokokura, T. Antimicrob. Agents Chemother. (2001) [Pubmed]
  11. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Burall, L.S., Harro, J.M., Li, X., Lockatell, C.V., Himpsl, S.D., Hebel, J.R., Johnson, D.E., Mobley, H.L. Infect. Immun. (2004) [Pubmed]
  12. Linkage mapping of the Aldo-2, Pax-5, Ambp, and D4h9S3E loci on mouse chromosome 4 in the region of homology with human chromosome 9. Pilz, A., Fountain, J., Peters, J., Abbott, C. Genomics (1993) [Pubmed]
  13. Urinary trypsin inhibitor reduces LPS-induced hypotension by suppressing tumor necrosis factor-alpha production through inhibition of Egr-1 expression. Molor-Erdene, P., Okajima, K., Isobe, H., Uchiba, M., Harada, N., Okabe, H. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  14. Impaired fertility in female mice lacking urinary trypsin inhibitor. Sato, H., Kajikawa, S., Kuroda, S., Horisawa, Y., Nakamura, N., Kaga, N., Kakinuma, C., Kato, K., Morishita, H., Niwa, H., Miyazaki , J. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  15. The genes for the inter-alpha-inhibitor family share a homologous organization in human and mouse. Salier, J.P., Verga, V., Doly, J., Diarra-Mehrpour, M., Erickson, R.P. Mamm. Genome (1992) [Pubmed]
  16. Urinary trypsin inhibitor protects against systemic inflammation induced by lipopolysaccharide. Inoue, K., Takano, H., Shimada, A., Yanagisawa, R., Sakurai, M., Yoshino, S., Sato, H., Yoshikawa, T. Mol. Pharmacol. (2005) [Pubmed]
  17. Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. McKeehan, W.L., Sakagami, Y., Hoshi, H., McKeehan, K.A. J. Biol. Chem. (1986) [Pubmed]
  18. Impairment of the correlation between urinary contents of alpha-1-microglobulin and ulinastatin is induced by intracerebroventricularly administered interleukin-6 in mice. Kaku, K., Shikimi, T., Inagaki, T., Ishino, H., Okunishi, H., Takaori, S. Neuropsychobiology (1999) [Pubmed]
  19. Protection against preterm delivery in mice by urinary trypsin inhibitor. Futamura, Y., Kajikawa, S., Kaga, N., Shibutani, Y. Obstetrics and gynecology. (1999) [Pubmed]
  20. Ability of intrauterine bacterial lipopolysaccharide to cause in situ uterine contractions in pregnant rabbits. Katsuki, Y., Kaga, N., Kakinuma, C., Takagaki, K., Kajikawa, S., Shibutani, Y. Acta obstetricia et gynecologica Scandinavica. (1997) [Pubmed]
  21. Genetic mapping of the whirler mutation. Rogers, M.J., Fleming, J., Kiernan, B.W., Mburu, P., Varela, A., Brown, S.D., Steel, K.P. Mamm. Genome (1999) [Pubmed]
  22. Role of urinary trypsin inhibitor in the maintenance of pregnancy in mice. Kaga, N., Katsuki, Y., Futamura, Y., Obata, M., Shibutani, Y. Obstetrics and gynecology. (1996) [Pubmed]
  23. Trophoblastic apoptosis in mice with preterm delivery and its suppression by urinary trypsin inhibitor. Kakinuma, C., Kuwayama, C., Kaga, N., Futamura, Y., Katsuki, Y., Shibutani, Y. Obstetrics and gynecology. (1997) [Pubmed]
  24. Identification and characterization of a Kunitz-type protease inhibitor in ascites fluid from patients with ovarian carcinoma. Kobayashi, H., Hirashima, Y., Sun, G.W., Ohi, H., Fujie, M., Terao, T. Int. J. Cancer (2000) [Pubmed]
  25. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Bahrani-Mougeot, F.K., Buckles, E.L., Lockatell, C.V., Hebel, J.R., Johnson, D.E., Tang, C.M., Donnenberg, M.S. Mol. Microbiol. (2002) [Pubmed]
  26. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Li, X., Lockatell, C.V., Johnson, D.E., Mobley, H.L. Mol. Microbiol. (2002) [Pubmed]
 
WikiGenes - Universities