The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Ctrl  -  chymotrypsin-like

Rattus norvegicus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ctrl


High impact information on Ctrl


Chemical compound and disease context of Ctrl

  • We have previously shown that ritonavir, an HIV-1 protease inhibitor used in AIDS therapy, can modulate the proteasome function by inhibiting the chymotrypsin-like activity and enhancing the trypsin-like activity [10].

Biological context of Ctrl

  • Increased hepatocyte apoptosis was observed in TGF-beta(A)-injected but not TGF-beta(L)-injected animals 24 h postinjection (10.5%) compared with Ctrl animals (0.37%) [1].
  • Ala-Ala-Phe-chloromethyl (CH2Cl) inhibits chymotrypsin-like activity assayed with succinyl (Suc) -Leu-Leu-Val-Tyr-AMC, but surprisingly not hydrolysis of Ala-Ala-Phe-7-amido4-methylcoumarin (AMC) [11].
  • Interestingly, a proteinase and a trypsin-like and a chymotrypsin-like peptidase activity could not be separated by customary chromatographic methods but were distinguishable by their sensitivities to various inhibitors, activators, and covalent modifiers, suggesting that the enzyme has three distinct active sites within a single protein [12].
  • The irreversible chymotrypsin-like protease inhibitor TPCK (tosyl-L-phenylalanyl chloromethyl ketone) inhibited membrane potential changes in rat neutrophils in response to phorbol myristate acetate, N-formylmethionylleucylphenylalanine and the calcium ionophore A23187 in a time- and dose-dependent manner [13].
  • These activities have often been referred to as 'chymotrypsin-like', 'trypsin-like' and 'peptidylglutamyl-peptide hydrolase' activities according to the type of residue in the P1 position, although it is now clear that mammalian proteasomes have at least five distinct catalytic sites [14].

Anatomical context of Ctrl


Associations of Ctrl with chemical compounds

  • Much smaller increases were seen in the A1254/Ctrl group [19].
  • Eighteen donor hearts were divided into 3 groups of 6 and arrested either 1 hour after intraperitoneal injection of 3 ml oil with (Prob Tx) or without (Oil Tx) probucol (300 mg/kg) or without injection (Ctrl Tx) [2].
  • Circulating thyroxine (T(4)) concentrations were sharply reduced at GD 21 in the A1254-exposed group, and on PND 3, 7, 14, and 21 in the A1254/A1254 and the Ctrl/A1254 groups [19].
  • To study this, isolated rat hearts were subjected to ischemia-reperfusion (I/R) (20 min/40 min), without (control = Ctrl) or with receptor-dependent [phenylephrine (PE), 50 microM; adenosine (ADO), 125 microM] or -independent [phorbol myristate acetate (PMA), 100 nM] activation of PKC [20].
  • Additionally, FI rats had significantly greater predicted trough gentamicin levels than Ctrl or FD rats [21].

Other interactions of Ctrl


Analytical, diagnostic and therapeutic context of Ctrl


  1. Autocrine expression of activated transforming growth factor-beta(1) induces apoptosis in normal rat liver. Schrum, L.W., Bird, M.A., Salcher, O., Burchardt, E.R., Grisham, J.W., Brenner, D.A., Rippe, R.A., Behrns, K.E. Am. J. Physiol. Gastrointest. Liver Physiol. (2001) [Pubmed]
  2. Attenuation of reperfusion injury with probucol in the heterotopic rat cardiac isograft. Rabkin, D.G., Jia, C.X., Spotnitz, H.M. J. Heart Lung Transplant. (1999) [Pubmed]
  3. The importance of cycling of blood alcohol levels in the pathogenesis of experimental alcoholic liver disease in rats. Bardag-Gorce, F., French, B.A., Li, J., Riley, N.E., Yuan, Q.X., Valinluck, V., Fu, P., Ingelman-Sundberg, M., Yoon, S., French, S.W. Gastroenterology (2002) [Pubmed]
  4. Biochemical methods for predicting metastatic ability of prostatic cancer utilizing the dunning R-3327 rat prostatic adenocarcinoma system as a model. Lowe, F.C., Isaacs, J.T. Cancer Res. (1984) [Pubmed]
  5. A comparative study of the chymotrypsin-like activity of the rat liver multicatalytic proteinase and the ClpP from Escherichia coli. Arribas, J., Castaño, J.G. J. Biol. Chem. (1993) [Pubmed]
  6. Amino acid sequence of rat submaxillary tonin reveals similarities to serine proteases. Lazure, C., Leduc, R., Seidah, N.G., Thibault, G., Genest, J., Chrétien, M. Nature (1984) [Pubmed]
  7. Induction of a novel Ca2+-dependent chymotrypsin-like serine protease by tumor promoters in rat livers. Kaneko, A., Enomoto, K., Oyamada, M., Sawada, N., Dempo, K., Mori, M. J. Natl. Cancer Inst. (1986) [Pubmed]
  8. Chymotrypsin substrate analogues inhibit endocytosis of insulin and insulin receptors in adipocytes. Jochen, A.L., Berhanu, P. J. Cell Biol. (1986) [Pubmed]
  9. Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells. Le Trong, H., Neurath, H., Woodbury, R.G. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  10. Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. Hosseini, H., André, P., Lefevre, N., Viala, L., Walzer, T., Peschanski, M., Lotteau, V. J. Neuroimmunol. (2001) [Pubmed]
  11. Catalytic properties of 26 S and 20 S proteasomes and radiolabeling of MB1, LMP7, and C7 subunits associated with trypsin-like and chymotrypsin-like activities. Reidlinger, J., Pike, A.M., Savory, P.J., Murray, R.Z., Rivett, A.J. J. Biol. Chem. (1997) [Pubmed]
  12. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. Tanaka, K., Ii, K., Ichihara, A., Waxman, L., Goldberg, A.L. J. Biol. Chem. (1986) [Pubmed]
  13. Inhibition by tosyl-L-phenylalanyl chloromethyl ketone of membrane potential changes in rat neutrophils. Correlation with the inhibition of biological activity. Duque, R.E., Phan, S.H., Sulavik, M.C., Ward, P.A. J. Biol. Chem. (1983) [Pubmed]
  14. Reaction of proteasomes with peptidylchloromethanes and peptidyldiazomethanes. Savory, P.J., Djaballah, H., Angliker, H., Shaw, E., Rivett, A.J. Biochem. J. (1993) [Pubmed]
  15. Immunofluorescent localization of a serine protease in rat small intestine. Woodbury, R.G., Gruzenski, G.M., Lagunoff, D. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  16. Role of tumor cell membrane-bound serine proteases in tumor-induced target cytolysis. DiStefano, J.F., Beck, G., Lane, B., Zucker, S. Cancer Res. (1982) [Pubmed]
  17. Identification of a protease inhibitor from rat peritoneal macrophages as poly(ADP-ribose). Inagaki, T., Miura, K., Murachi, T. J. Biol. Chem. (1980) [Pubmed]
  18. Inhibition of the proteasomal function in chondrocytes down-regulates growth plate chondrogenesis and longitudinal bone growth. Wu, S., De Luca, F. Endocrinology (2006) [Pubmed]
  19. PCBs, thyroid hormones, and ototoxicity in rats: cross-fostering experiments demonstrate the impact of postnatal lactation exposure. Crofton, K.M., Kodavanti, P.R., Derr-Yellin, E.C., Casey, A.C., Kehn, L.S. Toxicol. Sci. (2000) [Pubmed]
  20. Protein kinase C isoform diversity in preconditioning. Meldrum, D.R., Cleveland, J.C., Meng, X., Sheridan, B.C., Gamboni, F., Cain, B.S., Harken, A.H., Banerjee, A. J. Surg. Res. (1997) [Pubmed]
  21. Dose response studies of gentamicin nephrotoxicity in rats with experimental renal dysfunction. III. Effects of dosage adjustment method. Rogers, R.A., Hanna, A.Y., Riviere, J.E. Res. Commun. Chem. Pathol. Pharmacol. (1987) [Pubmed]
  22. Cleavage of membrane-associated ICAM-1 from astrocytes: involvement of a metalloprotease. Lyons, P.D., Benveniste, E.N. Glia (1998) [Pubmed]
  23. Purification and characterization of active recombinant rat kallikrein rK9. Zani, M., Brillard-Bourdet, M., Lazure, C., Juliano, L., Courty, Y., Gauthier, F., Moreau, T. Biochim. Biophys. Acta (2001) [Pubmed]
  24. Interaction of heparin with rat mast cell protease 1. Pejler, G., Maccarana, M. J. Biol. Chem. (1994) [Pubmed]
  25. Rat mast cell protease 4 is a beta-chymase with unusually stringent substrate recognition profile. Karlson, U., Pejler, G., Froman, G., Hellman, L. J. Biol. Chem. (2002) [Pubmed]
  26. Substrate specificity of two chymotrypsin-like proteases from rat mast cells. Studies with peptide 4-nitroanilides and comparison with cathepsin G. Yoshida, N., Everitt, M.T., Neurath, H., Woodbury, R.G., Powers, J.C. Biochemistry (1980) [Pubmed]
  27. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Graf, L., Craik, C.S., Patthy, A., Roczniak, S., Fletterick, R.J., Rutter, W.J. Biochemistry (1987) [Pubmed]
  28. The role of disulfide bond C191-C220 in trypsin and chymotrypsin. Várallyay, E., Lengyel, Z., Gráf, L., Szilágyi, L. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  29. Zymographic analysis of extracellular, released and cell-associated proteases of rat interleukin 2-activated natural killer (A-NK) cells. Wasserman, K., Kitson, R.P., Gabauer, M.K., Miller, C.A., Herberman, R.B., Goldfarb, R.H. In Vivo (1994) [Pubmed]
WikiGenes - Universities