The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Map1b  -  microtubule-associated protein 1B

Mus musculus

Synonyms: A230055D22, AI843217, LC1, MAP-1B, MAP1(X), ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mtap1b

  • In differentiated neuroblastoma cells, only MAP-1B and beta-tubulin are phosphorylated in a manner coupled to neurite outgrowth [1].
  • However, levels of two target-encoded proteins, an L-type calcium channel subunit and MAP1B, were downregulated in specific brain regions suggesting a defect in the expression of target-encoded proteins in fragile X syndrome [2].
  • MeWo melanoma cells (clone LC1) secrete a potent mitogenic activity susceptible to reinitiate DNA replication in quiescent rodent fibroblasts (CCL39, NRK-49F, NIH-3T3) but not in BHK-21 kidney cells [3].
  • In order to further investigate the role of MAP1B during axonogenesis we have cultured dorsal root ganglion (DRG) neurons from a MAP1B deficient mutant mouse [4].

Psychiatry related information on Mtap1b

  • Using the multiple T-maze, the open field and the Morris water maze we found that mice homozygous for a deletion of the MAP1B gene demonstrate impaired locomotor activity most likely correlated to a lack of physical endurance in general [5].

High impact information on Mtap1b


Biological context of Mtap1b


Anatomical context of Mtap1b


Associations of Mtap1b with chemical compounds


Enzymatic interactions of Mtap1b

  • Inhibition of GSK-3 beta leads to a decrease in a phosphorylated form of microtubule-associated protein-1B (MAP-1B), a protein involved in microtubule assembly, and a concomitant decrease in the level of stable microtubules [21].
  • In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2 [16].
  • Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B [16].
  • An increase in the phosphorylation of microtubule-associated protein MAP-1B, which accompanies neurite outgrowth induced by serum deprivation, is also observed upon addition of the two antiprotease synthetic peptides, although the nexin-2 (amyloid) peptide induces a less marked increase in phosphorylated MAP-1B than does the nexin-1 peptide [22].

Regulatory relationships of Mtap1b


Co-localisations of Mtap1b


Other interactions of Mtap1b

  • MAP1B and MAP2 are major members of neuronal microtubule-associated proteins (MAPs) [10].
  • MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance [15].
  • Our results indicate that, in hippocampal neurons, MAP1B and LIS1 co-localize, associate and interact with each another [11].
  • There was also increased expression of phosphorylated high molecular weight neurofilament subunit (NF-H), NF-M, and MAP1B [26].
  • Additional genetic linkage studies of markers not informative in the A/J x C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus [27].

Analytical, diagnostic and therapeutic context of Mtap1b


  1. Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neuronal cultures. Díaz-Nido, J., Serrano, L., Hernández, M.A., Avila, J. J. Neurochem. (1990) [Pubmed]
  2. The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Chen, L., Yun, S.W., Seto, J., Liu, W., Toth, M. Neuroscience (2003) [Pubmed]
  3. Autoregulation of MeWo metastatic melanoma cell growth: characterization of intracellular (FGF, MGSA) and secreted (PDGF) growth factors. Pichon, F., Lagarde, A.E. J. Cell. Physiol. (1989) [Pubmed]
  4. Microtubule-associated protein 1B is involved in the initial stages of axonogenesis in peripheral nervous system cultured neurons. Gonzalez-Billault, C., Owen, R., Gordon-Weeks, P.R., Avila, J. Brain Res. (2002) [Pubmed]
  5. Mice deficient in microtubule-associated protein MAP1B show a distinct behavioral phenotype and altered retina function. Pangratz-Fuehrer, S., Bubna-Littitz, H., Propst, F., Reitsamer, H. Behav. Brain Res. (2005) [Pubmed]
  6. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Perretti, M., Croxtall, J.D., Wheller, S.K., Goulding, N.J., Hannon, R., Flower, R.J. Nat. Med. (1996) [Pubmed]
  7. Humoral immunostimulation. V. Selection of variant cell lines. Shearer, W.T., Parker, C.W. J. Exp. Med. (1975) [Pubmed]
  8. A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. Ciani, L., Krylova, O., Smalley, M.J., Dale, T.C., Salinas, P.C. J. Cell Biol. (2004) [Pubmed]
  9. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. Kawauchi, T., Chihama, K., Nabeshima, Y., Hoshino, M. EMBO J. (2003) [Pubmed]
  10. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. Teng, J., Takei, Y., Harada, A., Nakata, T., Chen, J., Hirokawa, N. J. Cell Biol. (2001) [Pubmed]
  11. Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Jiménez-Mateos, E.M., Wandosell, F., Reiner, O., Avila, J., González-Billault, C. Biochem. J. (2005) [Pubmed]
  12. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. Noble, M., Lewis, S.A., Cowan, N.J. J. Cell Biol. (1989) [Pubmed]
  13. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. Takei, Y., Teng, J., Harada, A., Hirokawa, N. J. Cell Biol. (2000) [Pubmed]
  14. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. Takei, Y., Kondo, S., Harada, A., Inomata, S., Noda, T., Hirokawa, N. J. Cell Biol. (1997) [Pubmed]
  15. MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. Del Río, J.A., González-Billault, C., Ureña, J.M., Jiménez, E.M., Barallobre, M.J., Pascual, M., Pujadas, L., Simó, S., La Torre, A., Wandosell, F., Avila, J., Soriano, E. Curr. Biol. (2004) [Pubmed]
  16. A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation. Díaz-Nido, J., Serrano, L., Méndez, E., Avila, J. J. Cell Biol. (1988) [Pubmed]
  17. MAP1B is required for axon guidance and Is involved in the development of the central and peripheral nervous system. Meixner, A., Haverkamp, S., Wässle, H., Führer, S., Thalhammer, J., Kropf, N., Bittner, R.E., Lassmann, H., Wiche, G., Propst, F. J. Cell Biol. (2000) [Pubmed]
  18. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. Lucas, F.R., Goold, R.G., Gordon-Weeks, P.R., Salinas, P.C. J. Cell. Sci. (1998) [Pubmed]
  19. Glycogen synthase kinase-3beta phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons. Trivedi, N., Marsh, P., Goold, R.G., Wood-Kaczmar, A., Gordon-Weeks, P.R. J. Cell. Sci. (2005) [Pubmed]
  20. MAP5 expression in proliferating neuroblasts. Cheng, A., Krueger, B.K., Bambrick, L.L. Brain Res. Dev. Brain Res. (1999) [Pubmed]
  21. Wnt factors in axonal remodelling and synaptogenesis. Salinas, P.C. Biochem. Soc. Symp. (1999) [Pubmed]
  22. Addition of protease inhibitors to culture medium of neuroblastoma cells induces both neurite outgrowth and phosphorylation of microtubule-associated protein MAP-1B. Díaz-Nido, J., Armas-Portela, R., Avila, J. J. Cell. Sci. (1991) [Pubmed]
  23. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Kawauchi, T., Chihama, K., Nishimura, Y.V., Nabeshima, Y., Hoshino, M. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  24. Light chain 1 of microtubule-associated protein 1B can negatively regulate the action of Pes1. Lerch-Gaggl, A.F., Sun, K., Duncan, S.A. J. Biol. Chem. (2007) [Pubmed]
  25. Microtubule-associated protein 1B binds glyceraldehyde-3-phosphate dehydrogenase. Cueille, N., Blanc, C.T., Riederer, I.M., Riederer, B.M. J. Proteome Res. (2007) [Pubmed]
  26. Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. Dashiell, S.M., Tanner, S.L., Pant, H.C., Quarles, R.H. J. Neurochem. (2002) [Pubmed]
  27. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1. Beckers, M.C., Ernst, E., Diez, E., Morissette, C., Gervais, F., Hunter, K., Housman, D., Yoshida, S., Skamene, E., Gros, P. Genomics (1997) [Pubmed]
  28. Identification of high molecular weight microtubule-associated proteins in anterior pituitary tissue and cells using taxol-dependent purification combined with microtubule-associated protein specific antibodies. Bloom, G.S., Luca, F.C., Vallee, R.B. Biochemistry (1985) [Pubmed]
  29. Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. Garner, C.C., Garner, A., Huber, G., Kozak, C., Matus, A. J. Neurochem. (1990) [Pubmed]
WikiGenes - Universities