The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Map2  -  microtubule-associated protein 2

Mus musculus

Synonyms: G1-397-34, MAP-2, Microtubule-associated protein 2, Mtap-2, Mtap2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mtap2


Psychiatry related information on Mtap2


High impact information on Mtap2

  • A candidate for this link is MAP2 kinase, which is rapidly activated by tyrosine/threonine phosphorylation following mitogenic stimulation [7].
  • Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP2 and tau [8].
  • Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein [6].
  • These data imply that the carboxyl-terminal domain containing the 18-amino acid repeats constitutes the microtubule binding site in MAP2 [6].
  • To understand their differential localization, we performed transfection studies on primary cultured neurons using tagged tau, MAP2, MAP2C, and their chimeric/deletion mutants [9].

Chemical compound and disease context of Mtap2

  • We were able to achieve statistically significant differences in toxicity between intermediately toxic concentrations of glutamate (30, 50, and 100 microM) with the MAP2 assay, while we were not able to discriminate among these concentrations with the LDH assay [10].

Biological context of Mtap2


Anatomical context of Mtap2


Associations of Mtap2 with chemical compounds


Physical interactions of Mtap2


Co-localisations of Mtap2


Regulatory relationships of Mtap2

  • Moreover, we confirm that MAP2-dependent process elongation is enhanced after activation of JNK [12].
  • The prevention of MAP1A, MAP1B, and MAP2 proteolysis by antioxidants highlights the early reactive oxygen species generation in the perturbation of the microtubule network induced by soluble Abeta [27].
  • Enforced expression of Evi1 in P19 cells induced neuron-specific microtubule-associated protein-2 microtubule-associated protein-2 and TrkA expression in the absence of RA under monolayer culture [28].

Other interactions of Mtap2

  • Regional distribution of amyloid beta-protein precursor, growth-associated phosphoprotein-43 and microtubule-associated protein 2 messenger RNAs in the nigrostriatal system of normal and Weaver mutant mice and effects of ventral mesencephalic grafts [19].
  • Simultaneously, most of the cells expressed nestin but not microtubule-associated protein 2 (MAP2), and remained undifferentiated [29].
  • Moreover, based on MAP2 staining of tissue sections from E12.5 embryos the topography of newly generated neurons also appeared to be undisturbed in the telencephalon of PS1-/- embryos [30].
  • High hybridization signals were obtained for GAP-43, MAP2, beta APP695, beta APP714 and beta APP751 RNA transcripts in the grafted tissue; the beta APP770 species--normally seen in striatum and not substantia nigra--was not expressed in the grafts, but it was present in the recipient striatum [19].
  • In addition, although Tg2576 mice showed a progressive decrease in synaptophysin and MAP2 in the CA3 area of hippocampus compared with control B6SJL at 9, 12, and 16 months, the APPQ-/- mice had significantly less of a decrease in these markers at 12 and 16 months [31].

Analytical, diagnostic and therapeutic context of Mtap2


  1. Valproic Acid prolongs survival time of severe combined immunodeficient mice bearing intracerebellar orthotopic medulloblastoma xenografts. Shu, Q., Antalffy, B., Su, J.M., Adesina, A., Ou, C.N., Pietsch, T., Blaney, S.M., Lau, C.C., Li, X.N. Clin. Cancer Res. (2006) [Pubmed]
  2. Lithium ameliorates HIV-gp120-mediated neurotoxicity. Everall, I.P., Bell, C., Mallory, M., Langford, D., Adame, A., Rockestein, E., Masliah, E. Mol. Cell. Neurosci. (2002) [Pubmed]
  3. Neuropathologic and neuroinflammatory activities of HIV-1-infected human astrocytes in murine brain. Dou, H., Morehead, J., Bradley, J., Gorantla, S., Ellison, B., Kingsley, J., Smith, L.M., Chao, W., Bentsman, G., Volsky, D.J., Gendelman, H.E. Glia (2006) [Pubmed]
  4. Transient loss of microtubule-associated protein 2 immunoreactivity after moderate brain injury in mice. Huh, J.W., Raghupathi, R., Laurer, H.L., Helfaer, M.A., Saatman, K.E. J. Neurotrauma (2003) [Pubmed]
  5. Differential distribution of microtubule-associated proteins MAP-1 and MAP-2 in neurons of rat brain and association of MAP-1 with microtubules of neuroblastoma cells (clone N2A). Wiche, G., Briones, E., Hirt, H., Krepler, R., Artlieb, U., Denk, H. EMBO J. (1983) [Pubmed]
  6. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Lewis, S.A., Wang, D.H., Cowan, N.J. Science (1988) [Pubmed]
  7. MAP2 kinase and 70K S6 kinase lie on distinct signalling pathways. Ballou, L.M., Luther, H., Thomas, G. Nature (1991) [Pubmed]
  8. Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP2 and tau. Lewis, S.A., Ivanov, I.E., Lee, G.H., Cowan, N.J. Nature (1989) [Pubmed]
  9. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Kanai, Y., Hirokawa, N. Neuron (1995) [Pubmed]
  10. A sensitive and selective assay of neuronal degeneration in cell culture. Carrier, R.L., Ma, T.C., Obrietan, K., Hoyt, K.R. J. Neurosci. Methods (2006) [Pubmed]
  11. Genetically modified bone morphogenetic protein signalling alters traumatic brain injury-induced gene expression responses in the adult mouse. Israelsson, C., Lewén, A., Kylberg, A., Usoskin, D., Althini, S., Lindeberg, J., Deng, C.X., Fukuda, T., Wang, Y., Kaartinen, V., Mishina, Y., Hillered, L., Ebendal, T. J. Neurosci. Res. (2006) [Pubmed]
  12. Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. Björkblom, B., Ostman, N., Hongisto, V., Komarovski, V., Filén, J.J., Nyman, T.A., Kallunki, T., Courtney, M.J., Coffey, E.T. J. Neurosci. (2005) [Pubmed]
  13. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. Teng, J., Takei, Y., Harada, A., Nakata, T., Chen, J., Hirokawa, N. J. Cell Biol. (2001) [Pubmed]
  14. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. Harada, A., Teng, J., Takei, Y., Oguchi, K., Hirokawa, N. J. Cell Biol. (2002) [Pubmed]
  15. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. Takemura, R., Okabe, S., Umeyama, T., Kanai, Y., Cowan, N.J., Hirokawa, N. J. Cell. Sci. (1992) [Pubmed]
  16. Regulatory roles of presenilin-1 and nicastrin in neuronal differentiation during in vitro neurogenesis. Sarkar, S.N., Das, H.K. J. Neurochem. (2003) [Pubmed]
  17. Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. Garcia-Abreu, J., Moura Neto, V., Carvalho, S.L., Cavalcante, L.A. J. Neurosci. Res. (1995) [Pubmed]
  18. Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. Zhang, J., Li, Y., Lu, M., Cui, Y., Chen, J., Noffsinger, L., Elias, S.B., Chopp, M. J. Neurosci. Res. (2006) [Pubmed]
  19. Regional distribution of amyloid beta-protein precursor, growth-associated phosphoprotein-43 and microtubule-associated protein 2 messenger RNAs in the nigrostriatal system of normal and Weaver mutant mice and effects of ventral mesencephalic grafts. Solà, C., Mengod, G., Low, W.C., Norton, J., Ghetti, B., Palacios, J.M., Triarhou, L.C. Eur. J. Neurosci. (1993) [Pubmed]
  20. Novel object recognition in Apoe(-/-) mice improved by neonatal implantation of wild-type multipotential stromal cells. Peister, A., Zeitouni, S., Pfankuch, T., Reger, R.L., Prockop, D.J., Raber, J. Exp. Neurol. (2006) [Pubmed]
  21. Mitogen-induced tyrosine-phosphorylated 41- and 43-kDa proteins are family members of extracellular signal-regulated kinases/microtubule-associated protein 2 kinases. Chatani, Y., Tanaka, E., Tobe, K., Hattori, A., Sato, M., Tamemoto, H., Nishizawa, N., Nomoto, H., Takeya, T., Kadowaki, T. J. Biol. Chem. (1992) [Pubmed]
  22. Culture method for the induction of neurospheres from mouse embryonic stem cells by coculture with PA6 stromal cells. Kitajima, H., Yoshimura, S., Kokuzawa, J., Kato, M., Iwama, T., Motohashi, T., Kunisada, T., Sakai, N. J. Neurosci. Res. (2005) [Pubmed]
  23. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. Soriano, E., Del Río, J.A., Martínez, A., Supèr, H. J. Comp. Neurol. (1994) [Pubmed]
  24. Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Seabrook, G.R., Smith, D.W., Bowery, B.J., Easter, A., Reynolds, T., Fitzjohn, S.M., Morton, R.A., Zheng, H., Dawson, G.R., Sirinathsinghji, D.J., Davies, C.H., Collingridge, G.L., Hill, R.G. Neuropharmacology (1999) [Pubmed]
  25. Neurons in the dorsal column white matter of the spinal cord: complex neuropil in an unexpected location. Abbadie, C., Skinner, K., Mitrovic, I., Basbaum, A.I. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  26. Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. Demyanenko, G.P., Tsai, A.Y., Maness, P.F. J. Neurosci. (1999) [Pubmed]
  27. Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. Fifre, A., Sponne, I., Koziel, V., Kriem, B., Yen Potin, F.T., Bihain, B.E., Olivier, J.L., Oster, T., Pillot, T. J. Biol. Chem. (2006) [Pubmed]
  28. Ecotropic viral integration site-1 is activated during, and is sufficient for, neuroectodermal P19 cell differentiation. Kazama, H., Kodera, T., Shimizu, S., Mizoguchi, H., Morishita, K. Cell Growth Differ. (1999) [Pubmed]
  29. Neurotrophins facilitate neuronal differentiation of cultured neural stem cells via induction of mRNA expression of basic helix-loop-helix transcription factors Mash1 and Math1. Ito, H., Nakajima, A., Nomoto, H., Furukawa, S. J. Neurosci. Res. (2003) [Pubmed]
  30. Neural progenitor cells do not differentiate prematurely in presenilin-1 null mutant mice. Wen, P.H., De Gasperi, R., Gama Sosa, M.A., Elder, G.A. Neurosci. Lett. (2004) [Pubmed]
  31. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. Fonseca, M.I., Zhou, J., Botto, M., Tenner, A.J. J. Neurosci. (2004) [Pubmed]
  32. Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Heuer, H., Christ, S., Friedrichsen, S., Brauer, D., Winckler, M., Bauer, K., Raivich, G. Neuroscience (2003) [Pubmed]
  33. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. Hirokawa, N., Funakoshi, T., Sato-Harada, R., Kanai, Y. J. Cell Biol. (1996) [Pubmed]
  34. Identification of high molecular weight microtubule-associated proteins in anterior pituitary tissue and cells using taxol-dependent purification combined with microtubule-associated protein specific antibodies. Bloom, G.S., Luca, F.C., Vallee, R.B. Biochemistry (1985) [Pubmed]
  35. Preservation of hematopoietic properties in transplanted bone marrow cells in the brain. Ono, K., Yoshihara, K., Suzuki, H., Tanaka, K.F., Takii, T., Onozaki, K., Sawada, M. J. Neurosci. Res. (2003) [Pubmed]
WikiGenes - Universities