The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

pIGAL1_03  -  beta-lactamase

Escherichia coli

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of pIGAL1_03


Psychiatry related information on pIGAL1_03

  • This may be because moxalactam acts as a beta lactamase inhibitor for both staphylococcal beta lactamase, as well as the Sabath-Abraham Id type beta lactamase carried by P. aeruginosa (among others) [6].

High impact information on pIGAL1_03

  • Cytosolic intermediates of murein biosynthesis and degradation thus act antagonistically to control beta-lactamase expression, thereby operating as a cell-wall sensing device [7].
  • Addition of the muropeptide, anhMurNAc-tripeptide, which accumulates in beta-lactamase-overproducing mutants, counteracts the negative effect of UDP-MurNAc-pentapeptide, restoring the innate ability of AmpR to induce ampC expression in vitro [7].
  • We have tested mutagenic DNA shuffling for molecular evolution in a beta-lactamase model system [8].
  • The X-ray crystal structure of the molecular complex of penicillin G with a deacylation-defective mutant of the RTEM-1 beta-lactamase from Escherichia coli shows how these antibiotics are recognized and destroyed [9].
  • Xenopus oocytes can secrete bacterial beta-lactamase [10].

Chemical compound and disease context of pIGAL1_03


Biological context of pIGAL1_03

  • A beta-hairpin loop from domain 1 of BLIP is inserted into the active site of the beta-lactamase [15].
  • In the first fusion gene blahi, the hinge sequence was directly coupled to the 3' end of the beta-lactamase gene, whereas in the two other constructs, blal1hi and blal2hi, a linker encoding 14 and 10 amino acids, respectively, was inserted between the two subunits [16].
  • Unlike conventional beta-lactam antibiotics, where hydrolysis of the beta-lactam ring inactivates the antibiotic, hydrolysis of NB2001 by beta-lactamase releases triclosan [11].
  • Nucleotide sequences of CAZ-2, CAZ-6, and CAZ-7 beta-lactamase genes [17].
  • Enzyme-catalyzed therapeutic activation (ECTA) is a novel prodrug strategy to overcome drug resistance resulting from enzyme overexpression. beta-Lactamase overexpression is a common mechanism of bacterial resistance to beta-lactam antibiotics [11].

Anatomical context of pIGAL1_03

  • Disulphide bridge formation in the periplasm of Escherichia coli: beta-lactamase:: human IgG3 hinge fusions as a model system [16].
  • The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells [18].
  • Since efficient translocation of proteins across biological membranes is thought to be supported by cytoplasmic factors that protect presecretory molecules from being misfolded, these results suggest that both GroES and GroEL proteins possess a chaperone function by which they facilitate export of Bla [19].
  • Folding of active beta-lactamase in the yeast cytoplasm before translocation into the endoplasmic reticulum [20].
  • Beta-lactamase induction in Enterobacter cloacae, which is linked to peptidoglycan recycling, was investigated by high-performance liquid chromatographic analysis of cell wall fragments in genetically defined cells of Escherichia coli [21].

Associations of pIGAL1_03 with chemical compounds

  • The carboxylate of Asp 49 forms hydrogen bonds to four conserved, catalytic residues in the beta-lactamase, thereby mimicking the position of the penicillin G carboxylate observed in the acyl-enzyme complex of TEM-1 with substrate [15].
  • These three strains produced two beta-lactamases with pIs of 5.4 (TEM-1) and 7.6. beta-Lactamase assays revealed that the pI 7.6 enzyme hydrolyzed cefotaxime faster (at a relative hydrolysis rate of 30% compared with that of benzylpenicillin) than either ceftazidime or aztreonam (relative hydrolysis rates of 13 and 3.3%, respectively) [12].
  • We present here the results for one of the beta-lactamase ECTA compounds, NB2001, which consists of the antibacterial agent triclosan in a prodrug form with a cephalosporin scaffold [11].
  • The clinical use of beta-lactam antibiotics combined with beta-lactamase inactivators, such as clavulanate, has resulted in selection of beta-lactamases that are insensitive to inactivation by these molecules [22].
  • TEM-7 is a novel broad-spectrum beta-lactamase (Bla), selected in vivo, with a resistance profile similar to that of TEM-1 and TEM-2, but extended to ceftazidime (Caz) and aztreonam [23].

Other interactions of pIGAL1_03


Analytical, diagnostic and therapeutic context of pIGAL1_03


  1. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Sutcliffe, J.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  2. Transferable class C beta-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC beta-lactamase. Gazouli, M., Tzouvelekis, L.S., Vatopoulos, A.C., Tzelepi, E. J. Antimicrob. Chemother. (1998) [Pubmed]
  3. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. Petrosino, J.F., Palzkill, T. J. Bacteriol. (1996) [Pubmed]
  4. Beta-lactamase expression in Streptomyces cacaoi. Urabe, H., Lenzini, M.V., Mukaide, M., Dusart, J., Nakano, M.M., Ghuysen, J.M., Ogawara, H. J. Bacteriol. (1990) [Pubmed]
  5. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Savijoki, K., Kahala, M., Palva, A. Gene (1997) [Pubmed]
  6. Moxalactam and piperacillin: a study of in vitro characteristics and pharmacokinetics in cancer patients. Drusano, G.L., de Jongh, C., Newman, K., Joshi, J., Wharton, R., Moody, M.R., Schimpff, S.C. Infection (1985) [Pubmed]
  7. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Jacobs, C., Frère, J.M., Normark, S. Cell (1997) [Pubmed]
  8. Rapid evolution of a protein in vitro by DNA shuffling. Stemmer, W.P. Nature (1994) [Pubmed]
  9. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Strynadka, N.C., Adachi, H., Jensen, S.E., Johns, K., Sielecki, A., Betzel, C., Sutoh, K., James, M.N. Nature (1992) [Pubmed]
  10. Xenopus oocytes can secrete bacterial beta-lactamase. Wiedmann, M., Huth, A., Rapoport, T.A. Nature (1984) [Pubmed]
  11. NB2001, a novel antibacterial agent with broad-spectrum activity and enhanced potency against beta-lactamase-producing strains. Li, Q., Lee, J.Y., Castillo, R., Hixon, M.S., Pujol, C., Doppalapudi, V.R., Shepard, H.M., Wahl, G.M., Lobl, T.J., Chan, M.F. Antimicrob. Agents Chemother. (2002) [Pubmed]
  12. SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Bradford, P.A., Urban, C., Jaiswal, A., Mariano, N., Rasmussen, B.A., Projan, S.J., Rahal, J.J., Bush, K. Antimicrob. Agents Chemother. (1995) [Pubmed]
  13. In vitro activity of temocillin against extended spectrum beta-lactamase-producing Escherichia coli. Rodriguez-Villalobos, H., Malaviolle, V., Frankard, J., de Mendonça, R., Nonhoff, C., Struelens, M.J. J. Antimicrob. Chemother. (2006) [Pubmed]
  14. Beta-lactamase TEM1 of E. coli. Crystal structure determination at 2.5 A resolution. Jelsch, C., Lenfant, F., Masson, J.M., Samama, J.P. FEBS Lett. (1992) [Pubmed]
  15. A potent new mode of beta-lactamase inhibition revealed by the 1.7 A X-ray crystallographic structure of the TEM-1-BLIP complex. Strynadka, N.C., Jensen, S.E., Alzari, P.M., James, M.N. Nat. Struct. Biol. (1996) [Pubmed]
  16. Disulphide bridge formation in the periplasm of Escherichia coli: beta-lactamase:: human IgG3 hinge fusions as a model system. De Sutter, K., Remaut, E., Fiers, W. Mol. Microbiol. (1992) [Pubmed]
  17. Nucleotide sequences of CAZ-2, CAZ-6, and CAZ-7 beta-lactamase genes. Chanal, C., Poupart, M.C., Sirot, D., Labia, R., Sirot, J., Cluzel, R. Antimicrob. Agents Chemother. (1992) [Pubmed]
  18. The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells. Moore, J.T., Davis, S.T., Dev, I.K. Anal. Biochem. (1997) [Pubmed]
  19. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. Kusukawa, N., Yura, T., Ueguchi, C., Akiyama, Y., Ito, K. EMBO J. (1989) [Pubmed]
  20. Folding of active beta-lactamase in the yeast cytoplasm before translocation into the endoplasmic reticulum. Paunola, E., Suntio, T., Jämsä, E., Makarow, M. Mol. Biol. Cell (1998) [Pubmed]
  21. The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Dietz, H., Pfeifle, D., Wiedemann, B. Antimicrob. Agents Chemother. (1997) [Pubmed]
  22. X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid. Swarén, P., Golemi, D., Cabantous, S., Bulychev, A., Maveyraud, L., Mobashery, S., Samama, J.P. Biochemistry (1999) [Pubmed]
  23. Substitution of serine for arginine in position 162 of TEM-type beta-lactamases extends the substrate profile of mutant enzymes, TEM-7 and TEM-101, to ceftazidime and aztreonam. Collatz, E., Tran Van Nhieu, G., Billot-Klein, D., Williamson, R., Gutmann, L. Gene (1989) [Pubmed]
  24. Purification of beta-lactamases and enzyme kinetic studies on aztreonam. Zhao, X.J., Li, J.T. Chin. Med. J. (1992) [Pubmed]
  25. Production and secretion in Escherichia coli of hepatitis B virus pre-S2 antigen as fusion proteins with beta-lactamase. Kadokura, H., Yoda, K., Imai, M., Yamasaki, M. Appl. Environ. Microbiol. (1990) [Pubmed]
  26. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Boyd, D.A., Tyler, S., Christianson, S., McGeer, A., Muller, M.P., Willey, B.M., Bryce, E., Gardam, M., Nordmann, P., Mulvey, M.R. Antimicrob. Agents Chemother. (2004) [Pubmed]
  27. Evaluation of plasmid-encoded beta-lactamase resistance in Escherichia coli blood culture isolates. Huovinen, S., Huovinen, P., Torniainen, K., Jacoby, G.A. Eur. J. Clin. Microbiol. Infect. Dis. (1988) [Pubmed]
  28. Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant S130G SHV-1 beta-lactamase. Insights into the mechanism of inhibition. Sulton, D., Pagan-Rodriguez, D., Zhou, X., Liu, Y., Hujer, A.M., Bethel, C.R., Helfand, M.S., Thomson, J.M., Anderson, V.E., Buynak, J.D., Ng, L.M., Bonomo, R.A. J. Biol. Chem. (2005) [Pubmed]
  29. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Rasheed, J.K., Jay, C., Metchock, B., Berkowitz, F., Weigel, L., Crellin, J., Steward, C., Hill, B., Medeiros, A.A., Tenover, F.C. Antimicrob. Agents Chemother. (1997) [Pubmed]
  30. Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis. Bootsma, H.J., van Dijk, H., Verhoef, J., Fleer, A., Mooi, F.R. Antimicrob. Agents Chemother. (1996) [Pubmed]
WikiGenes - Universities