The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN34260     (2R,5R)-3-(2- hydroxyethylidene)-7-oxo-4...

Synonyms: AG-G-05113, CTK1G9871, CTK2F3392, AC1L287A, 62319-53-3
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CLAVULANIC ACID


High impact information on CLAVULANIC ACID


Chemical compound and disease context of CLAVULANIC ACID


Biological context of CLAVULANIC ACID


Anatomical context of CLAVULANIC ACID


Associations of CLAVULANIC ACID with other chemical compounds


Gene context of CLAVULANIC ACID

  • With the exception of the TEM-12 beta-lactamase, introduction of the Met69-->Leu substitution did not give rise to enzymes with increased resistance to clavulanate compared to that of the TEM-1 beta-lactamase [27].
  • The clinical use of beta-lactam antibiotics combined with beta-lactamase inactivators, such as clavulanate, has resulted in selection of beta-lactamases that are insensitive to inactivation by these molecules [28].
  • Replacement of Asn276 by Asp in SHV-5 beta-lactamase caused a ten-fold increase in the IC50 of clavulanate; the increases in the IC50s of tazobactam and sulbactam were 10- and 5.5-fold, respectively [29].
  • Tazobactam and clavulanate combinations were studied, as previous observation showed that these inhibitors incompletely reversed the in-vitro amoxycillin and piperacillin resistance of beta-lactamase-positive staphylococci [30].
  • To determine the potentiating effect of clavulanate on the antibacterial activity of penicillins, we studied MRSA in vitro by an agar-dilution method [31].

Analytical, diagnostic and therapeutic context of CLAVULANIC ACID

  • Electrospray ionization mass spectrometry of clavulanate inhibited SHV-1 and R244S showed nearly identical mass adducts, arguing against a difference in the inactivation mechanism [3].
  • This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens [32].
  • High-performance liquid chromatography analysis of the peptidoglycan isolated from the clavulanate-grown cells showed major qualitative and quantitative changes in stem peptide composition, the most striking feature of which was the accumulation of peptide species carrying intact D-alanyl-D-alanine residues at the carboxy termini [33].
  • The beta-lactamase PER-2 (formerly ceftibutenase-1; CTI-1) is highly susceptible to inhibition by clavulanate and is located at a pI of 5.4 after isoelectric focusing [34].
  • A fixed ratio (2:1) and a fixed concentration (clavulanate, 2 and 4 micrograms/ml; sulbactam, 8 micrograms/ml) were used in the agar dilution technique [35].


  1. Randomised study of myringotomy, amoxycillin/clavulanate, or both for acute otitis media in infants. Engelhard, D., Cohen, D., Strauss, N., Sacks, T.G., Jorczak-Sarni, L., Shapiro, M. Lancet (1989) [Pubmed]
  2. Amoxycillin/clavulanate resistant Escherichia coli. French, G., Ling, T. Lancet (1988) [Pubmed]
  3. Probing active site chemistry in SHV beta-lactamase variants at Ambler position 244. Understanding unique properties of inhibitor resistance. Thomson, J.M., Distler, A.M., Prati, F., Bonomo, R.A. J. Biol. Chem. (2006) [Pubmed]
  4. Antibacterial activity of ticarcillin in the presence of clavulanate potassium. Sutherland, R., Beale, A.S., Boon, R.J., Griffin, K.E., Slocombe, B., Stokes, D.H., White, A.R. Am. J. Med. (1985) [Pubmed]
  5. Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant S130G SHV-1 beta-lactamase. Insights into the mechanism of inhibition. Sulton, D., Pagan-Rodriguez, D., Zhou, X., Liu, Y., Hujer, A.M., Bethel, C.R., Helfand, M.S., Thomson, J.M., Anderson, V.E., Buynak, J.D., Ng, L.M., Bonomo, R.A. J. Biol. Chem. (2005) [Pubmed]
  6. Effect of amoxicillin-clavulanate in clinically diagnosed acute rhinosinusitis: a placebo-controlled, double-blind, randomized trial in general practice. Bucher, H.C., Tschudi, P., Young, J., Périat, P., Welge-Lüussen, A., Züst, H., Schindler, C. Arch. Intern. Med. (2003) [Pubmed]
  7. Molecular dynamics at the root of expansion of function in the M69L inhibitor-resistant TEM beta-lactamase from Escherichia coli. Meroueh, S.O., Roblin, P., Golemi, D., Maveyraud, L., Vakulenko, S.B., Zhang, Y., Samama, J.P., Mobashery, S. J. Am. Chem. Soc. (2002) [Pubmed]
  8. Clinical comparison of cefuroxime axetil and amoxicillin/clavulanate in the treatment of patients with acute bacterial maxillary sinusitis. Camacho, A.E., Cobo, R., Otte, J., Spector, S.L., Lerner, C.J., Garrison, N.A., Miniti, A., Mydlow, P.K., Giguere, G.C., Collins, J.J. Am. J. Med. (1992) [Pubmed]
  9. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Blazquez, J., Baquero, M.R., Canton, R., Alos, I., Baquero, F. Antimicrob. Agents Chemother. (1993) [Pubmed]
  10. In vitro extracellular and intracellular activities of clavulanic acid and those of piperacillin and ceftriaxone alone and in combination with tazobactam against clinical isolates of Legionella species. Edelstein, P.H., Edelstein, M.A. Antimicrob. Agents Chemother. (1994) [Pubmed]
  11. Comparative activities of the beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with ampicillin and broad-spectrum penicillins against defined beta-lactamase-producing aerobic gram-negative bacilli. Jacobs, M.R., Aronoff, S.C., Johenning, S., Shlaes, D.M., Yamabe, S. Antimicrob. Agents Chemother. (1986) [Pubmed]
  12. Cefprozil. A review of its antibacterial activity, pharmacokinetic properties, and therapeutic potential. Wiseman, L.R., Benfield, P. Drugs (1993) [Pubmed]
  13. Antibiotic treatment of experimental endocarditis due to methicillin-resistant Staphylococcus epidermidis. Entenza, J.M., Fluckiger, U., Glauser, M.P., Moreillon, P. J. Infect. Dis. (1994) [Pubmed]
  14. Characterization of beta-lactamases from non-Bacteroides fragilis group Bacteroides spp. belonging to seven species and their role in beta-lactam resistance. Appelbaum, P.C., Philippon, A., Jacobs, M.R., Spangler, S.K., Gutmann, L. Antimicrob. Agents Chemother. (1990) [Pubmed]
  15. Reversal of clavulanate resistance conferred by a Ser-244 mutant of TEM-1 beta-lactamase as a result of a second mutation (Arg to Ser at position 164) that enhances activity against ceftazidime. Imtiaz, U., Manavathu, E.K., Mobashery, S., Lerner, S.A. Antimicrob. Agents Chemother. (1994) [Pubmed]
  16. Inactivation of RTEM beta-lactamase from Escherichia coli by clavulanic acid and 9-deoxyclavulanic acid. Charnas, R.L., Knowles, J.R. Biochemistry (1981) [Pubmed]
  17. Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Brown, R.P., Aplin, R.T., Schofield, C.J. Biochemistry (1996) [Pubmed]
  18. Contribution of beta-lactamases to bacterial resistance and mechanisms to inhibit beta-lactamases. Neu, H.C. Am. J. Med. (1985) [Pubmed]
  19. Concentration of amoxycillin and clavulanate in lung compartments in adults without pulmonary infection. Cook, P.J., Andrews, J.M., Woodcock, J., Wise, R., Honeybourne, D. Thorax (1994) [Pubmed]
  20. Role of Streptococcus pneumoniae and Haemophilus influenzae in the development of acute otitis media and otitis media with effusion in a gerbil model. Soriano, F., Parra, A., Cenjor, C., Nieto, E., García-Calvo, G., Giménez, M.J., Aguilar, L., Ponte, C. J. Infect. Dis. (2000) [Pubmed]
  21. Treatment of lower urinary tract infection caused by multidrug-resistant extended-spectrum-beta-lactamase-producing Escherichia coli with amoxicillin/clavulanate: case report and characterization of the isolate. Lagacé-Wiens, P.R., Nichol, K.A., Nicolle, L.E., DeCorby, M., McCracken, M., Mulvey, M.R., Zhanel, G.G. J. Antimicrob. Chemother. (2006) [Pubmed]
  22. Use of quinolones for the treatment of acute exacerbations of chronic bronchitis. Chodosh, S. Am. J. Med. (1991) [Pubmed]
  23. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Lister, P.D., Gardner, V.M., Sanders, C.C. Antimicrob. Agents Chemother. (1999) [Pubmed]
  24. Effects of CO2 and pH on inhibition of TEM-1 and other beta-lactamases by penicillanic acid sulfones. Livermore, D.M., Corkill, J.E. Antimicrob. Agents Chemother. (1992) [Pubmed]
  25. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Chambers, H.F., Moreau, D., Yajko, D., Miick, C., Wagner, C., Hackbarth, C., Kocagöz, S., Rosenberg, E., Hadley, W.K., Nikaido, H. Antimicrob. Agents Chemother. (1995) [Pubmed]
  26. Sequence of the gene encoding a plasmid-mediated cefotaxime-hydrolyzing class A beta-lactamase (CTX-M-4): involvement of serine 237 in cephalosporin hydrolysis. Gazouli, M., Tzelepi, E., Sidorenko, S.V., Tzouvelekis, L.S. Antimicrob. Agents Chemother. (1998) [Pubmed]
  27. Construction and characterization of mutants of the TEM-1 beta-lactamase containing amino acid substitutions associated with both extended-spectrum resistance and resistance to beta-lactamase inhibitors. Stapleton, P.D., Shannon, K.P., French, G.L. Antimicrob. Agents Chemother. (1999) [Pubmed]
  28. X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid. Swarén, P., Golemi, D., Cabantous, S., Bulychev, A., Maveyraud, L., Mobashery, S., Samama, J.P. Biochemistry (1999) [Pubmed]
  29. Aspartic acid for asparagine substitution at position 276 reduces susceptibility to mechanism-based inhibitors in SHV-1 and SHV-5 beta-lactamases. Giakkoupi, P., Tzelepi, E., Legakis, N.J., Tzouvelekis, L.S. J. Antimicrob. Chemother. (1999) [Pubmed]
  30. beta-Lactamase types amongst Staphylococcus aureus isolates in relation to susceptibility to beta-lactamase inhibitor combinations. Bonfiglio, G., Livermore, D.M. J. Antimicrob. Chemother. (1994) [Pubmed]
  31. Activity of clavulanate-potentiated penicillins against methicillin-resistant Staphylococcus aureus. Graninger, W., Leitha, T., Griffin, K., Witte, W., Svacina, W. J. Antimicrob. Chemother. (1989) [Pubmed]
  32. Treatment of acute bacterial rhinosinusitis caused by antimicrobial-resistant Streptococcus pneumoniae. Anon, J.B. Am. J. Med. (2004) [Pubmed]
  33. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Severin, A., Severina, E., Tomasz, A. Antimicrob. Agents Chemother. (1997) [Pubmed]
  34. Characterization of beta-lactamase gene blaPER-2, which encodes an extended-spectrum class A beta-lactamase. Bauernfeind, A., Stemplinger, I., Jungwirth, R., Mangold, P., Amann, S., Akalin, E., Anğ, O., Bal, C., Casellas, J.M. Antimicrob. Agents Chemother. (1996) [Pubmed]
  35. Ampicillin-sulbactam and amoxicillin-clavulanate susceptibility testing of Escherichia coli isolates with different beta-lactam resistance phenotypes. Oliver, A., Pérez-Vázquez, M., Martínez-Ferrer, M., Baquero, F., De Rafael, L., Cantón, R. Antimicrob. Agents Chemother. (1999) [Pubmed]
WikiGenes - Universities