The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

IGF2  -  insulin-like growth factor 2 (somatomedin A)

Gallus gallus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of IGF2


High impact information on IGF2


Biological context of IGF2


Anatomical context of IGF2


Associations of IGF2 with chemical compounds


Physical interactions of IGF2

  • The developmental patterns of [125I]IGF-I and [125I]IGF-II binding to brain were similar, and IGF-I showed approximately a 2-fold higher binding than IGF-II; there was a sharp increase from days 3 to 6, and a subsequent gradual fall during the second and third weeks of ontogeny [22].
  • Both IGF-I and IGF-II ligands in the Western ligand blot revealed the most intense binding at 30 kDa for plasma obtained from chickens with restricted food intake [23].

Regulatory relationships of IGF2

  • IGF-I and IGFBP concentrations in the plasma of young broiler chickens were influenced by nutritional state but IGF-II concentrations were not [23].
  • The role of protein kinase A and cyclin-dependent (CDC2) kinase in the control of basal and IGF-II-induced proliferation and secretory activity of chicken ovarian cells [24].

Other interactions of IGF2

  • Half-maximal responses required 0.2 nM IGF2 or IGF1, or 20 nM insulin [25].
  • Insulin-like growth factor-I and IGF-II peaked at 14E [18].
  • Potential role for insulin-like growth factor II and vitronectin in the endothelial-mesenchymal transition process [11].
  • In contrast to the monophasic profile for IGF-I, plasma concentrations of IGF-II were maximal on Day 10.5 of incubation and declined to a nadir on Day 17.5 of incubation [26].
  • A striking observation concerning the expression profiles of both IGF-II and IGFBP-5 at early stages of chick embryogenesis is that both these genes are expressed asymmetrically in a pattern similar to that of Sonic Hedgehog (Shh) [27].

Analytical, diagnostic and therapeutic context of IGF2


  1. Retinoic acid regulates insulin-like growth factor II expression in a neuroblastoma cell line. Matsumoto, K., Gaetano, C., Daughaday, W.H., Thiele, C.J. Endocrinology (1992) [Pubmed]
  2. Effects of lysine deficiencies on plasma levels of thyroid hormones, insulin-like growth factors I and II, liver and body weights, and feed intake in growing chickens. Carew, L., McMurtry, J., Alster, F. Poult. Sci. (2005) [Pubmed]
  3. Preferential binding of insulin-like growth factors to a binding protein rather than to receptors on chicken hepatoma cell (LMH) membranes. Duclos, M.J., Chevalier, B., Simon, J. Growth Regul. (1994) [Pubmed]
  4. Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. Recio-Pinto, E., Rechler, M.M., Ishii, D.N. J. Neurosci. (1986) [Pubmed]
  5. Production and characterization of recombinant chicken insulin-like growth factor-II from Escherichia coli. Upton, Z., Francis, G.L., Kita, K., Wallace, J.C., Ballard, F.J. J. Mol. Endocrinol. (1995) [Pubmed]
  6. Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons. Zackenfels, K., Oppenheim, R.W., Rohrer, H. Neuron (1995) [Pubmed]
  7. Extracellular release as the major degradative pathway of the insulin-like growth factor II/mannose 6-phosphate receptor. Clairmont, K.B., Czech, M.P. J. Biol. Chem. (1991) [Pubmed]
  8. The chicken liver cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for insulin-like growth factor II. Canfield, W.M., Kornfeld, S. J. Biol. Chem. (1989) [Pubmed]
  9. Chicken and Xenopus mannose 6-phosphate receptors fail to bind insulin-like growth factor II. Clairmont, K.B., Czech, M.P. J. Biol. Chem. (1989) [Pubmed]
  10. Insulin-like growth factor 2 as a candidate gene influencing growth and carcass traits and its bialleleic expression in chicken. Wang, G., Yan, B., Deng, X., Li, C., Hu, X., Li, N. Sci. China, C, Life Sci. (2005) [Pubmed]
  11. Potential role for insulin-like growth factor II and vitronectin in the endothelial-mesenchymal transition process. Arciniegas, E., Neves, Y.C., Carrillo, L.M. Differentiation (2006) [Pubmed]
  12. Insulin and IGFs induce apoptosis in chick embryo retinas deprived of L-glutamine. Calvaruso, G., Vento, R., Gerbino, E., Lauricella, M., Carabillò, M., Main, H., Tesoriere, G. Cell Death Differ. (1997) [Pubmed]
  13. Insulin and insulin-like growth factors stimulate in vivo receptor autophosphorylation and tyrosine phosphorylation of a 70K substrate in cultured fetal chick neurons. Kenner, K.A., Heidenreich, K.A. Endocrinology (1991) [Pubmed]
  14. Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth. Fisher, M.C., Meyer, C., Garber, G., Dealy, C.N. Bone (2005) [Pubmed]
  15. Monoalleleic transcription of the insulin-like growth factor-II gene (Igf2) in chick embryos. Koski, L.B., Sasaki, E., Roberts, R.D., Gibson, J., Etches, R.J. Mol. Reprod. Dev. (2000) [Pubmed]
  16. Insulin-like growth factor binding protein-4 inhibits both basal and IGF-mediated chick pelvic cartilage growth in vitro. Schiltz, P.M., Mohan, S., Baylink, D.J. J. Bone Miner. Res. (1993) [Pubmed]
  17. Evidence that p21ras mediates the neurotrophic effects of insulin and insulin-like growth factor I in chick forebrain neurons. Robinson, L.J., Leitner, W., Draznin, B., Heidenreich, K.A. Endocrinology (1994) [Pubmed]
  18. Developmental Changes of Plasma Insulin, Glucagon, Insulin-like Growth Factors, Thyroid Hormones, and Glucose Concentrations in Chick Embryos and Hatched Chicks. Lu, J.W., McMurtry, J.P., Coon, C.N. Poult. Sci. (2007) [Pubmed]
  19. Effect of the sex-linked dwarf gene on thyrotrophic and somatotrophic axes in the chick embryo. Huybrechts, L.M., Michielsen, R., Darras, V.M., Buonomo, F.C., Kühn, E.R., Decuypere, E. Reprod. Nutr. Dev. (1989) [Pubmed]
  20. The relationship of body composition, feed intake, and metabolic hormones for broiler breeder females. Sun, J.M., Richards, M.P., Rosebrough, R.W., Ashwell, C.M., McMurtry, J.P., Coon, C.N. Poult. Sci. (2006) [Pubmed]
  21. Imprint status of M6P/IGF2R and IGF2 in chickens. Nolan, C.M., Killian, J.K., Petitte, J.N., Jirtle, R.L. Dev. Genes Evol. (2001) [Pubmed]
  22. Ontogeny of receptors for insulin-like peptides in chick embryo tissues: early dominance of insulin-like growth factor over insulin receptors in brain. Bassas, L., de Pablo, F., Lesniak, M.A., Roth, J. Endocrinology (1985) [Pubmed]
  23. Influence of nutrition on hepatic IGF-I mRNA levels and plasma concentrations of IGF-I and IGF-II in meat-type chickens. Kita, K., Tomas, F.M., Owens, P.C., Knowles, S.E., Forbes, B.E., Upton, Z., Hughes, R., Ballard, F.J. J. Endocrinol. (1996) [Pubmed]
  24. The role of protein kinase A and cyclin-dependent (CDC2) kinase in the control of basal and IGF-II-induced proliferation and secretory activity of chicken ovarian cells. Sirotkin, A.V., Grossmann, R. Anim. Reprod. Sci. (2006) [Pubmed]
  25. Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. Caroni, P., Grandes, P. J. Cell Biol. (1990) [Pubmed]
  26. Ontogenic changes in the circulating concentrations of insulin-like growth factor (IGF)-I, IGF-II, and IGF-binding proteins in the chicken embryo. Scanes, C.G., Thommes, R.C., Radecki, S.V., Buonomo, F.C., Woods, J.E. Gen. Comp. Endocrinol. (1997) [Pubmed]
  27. Major components of the insulin-like growth factor axis are expressed early in chicken embryogenesis, with IGF binding protein ( IGFBP) -5 expression subject to regulation by Sonic Hedgehog. Allan, G.J., Zannoni, A., McKinnell, I., Otto, W.R., Holzenberger, M., Flint, D.J., Patel, K. Anat. Embryol. (2003) [Pubmed]
  28. Purification, partial sequences and properties of chicken insulin-like growth factors. Dawe, S.R., Francis, G.L., McNamara, P.J., Wallace, J.C., Ballard, F.J. J. Endocrinol. (1988) [Pubmed]
  29. Sequence polymorphisms, allelic expression status and chromosome locations of the chicken IGF2 and MPR1 genes. Yokomine, T., Kuroiwa, A., Tanaka, K., Tsudzuki, M., Matsuda, Y., Sasaki, H. Cytogenet. Cell Genet. (2001) [Pubmed]
  30. Temporal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken. Kocamis, H., McFarland, D.C., Killefer, J. J. Cell. Physiol. (2001) [Pubmed]
  31. Assessment of developmental changes in chicken and turkey insulin-like growth factor-II by homologous radioimmunoassay. McMurtry, J.P., Rosebrough, R.W., Brocht, D.M., Francis, G.L., Upton, Z., Phelps, P. J. Endocrinol. (1998) [Pubmed]
WikiGenes - Universities