The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SOX2  -  SRY (sex determining region Y)-box 2

Homo sapiens

Synonyms: ANOP3, MCOPS3, Transcription factor SOX-2
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SOX2

 

High impact information on SOX2

  • We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes [7].
  • Critical transcription factors, notably OCT4, SOX2, and NANOG, are necessary to maintain self-renewal and pluripotency, two properties characteristic of embryonic stem (ES) cells [8].
  • Furthermore, we provide genetic and molecular evidence that SOX2 activity, in a concentration-dependent manner, plays a key role in the regulation of the NOTCH1 signaling pathway in retinal progenitor cells [9].
  • Collectively, these results show that precise regulation of SOX2 dosage is critical for temporal and spatial regulation of retinal progenitor cell differentiation and provide a cellular and molecular model for understanding how hypomorphic levels of SOX2 cause retinal defects in humans [9].
  • Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse [9].
 

Chemical compound and disease context of SOX2

  • Sox2 expression was observed in 16.7% of cases and was significantly more frequently expressed in basal-like breast carcinomas (43.3% in basal-like, 10.6% in luminal and 13.3% in HER2+ tumours, P<0.001) [10].
 

Biological context of SOX2

 

Anatomical context of SOX2

  • Moreover, over-expression of SOX2 induced the mRNA expression of endogenous MUC5AC, a specific mucin marker for the gastric type, in COS-7 cells [3].
  • Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2 [11].
  • Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG [12].
  • The SOX2 expression pattern in developing gonads is consistent with the hypothesis that this gene plays a role in the germ cell line [13].
  • We cloned and characterized the ovine SOX2 transcript using the screening of a testis (12dpp) cDNA library with a probe containing the SRY-HMG-box and we performed 3'RACE experiments [13].
 

Associations of SOX2 with chemical compounds

  • Finally, these data demonstrated that NPCs exposed to cocaine underwent differentiation into cells expressing neuronal markers that was associated with an inhibition of SOX2 (SRY-related HMG-box gene 2), a transcription factor that inhibits NPC differentiation [14].
  • Out of 31 PanIN-3s, 7 were positive (22.6%), and SOX2 protein was localized in the nuclei of cells of the basal epithelium or in the vicinity of luminal necrosis [15].
  • Of interest, addition of the tyrosine phosphatase inhibitor, sodium vanadate, selectively repressed Nanog transcription without any detectable changes in upstream transcriptional regulators Oct3/4 and Sox2 [16].
  • Further, SUMO-1-conjugated Sox2 at the lysine 247 or at the carboxyl terminus reduced the binding to the Fgf4 enhancer [17].
  • Substitution of the target lysine to arginine lost the sumoylation but little affected transcriptional potential or nuclear localization of Sox2 [17].
 

Physical interactions of SOX2

 

Regulatory relationships of SOX2

  • The SOX2 gene at 3q27 might be considered an excellent candidate gene for LMS because the corresponding protein stimulates expression of FGF4, an important signaling molecule during limb outgrowth and development [19].
 

Other interactions of SOX2

 

Analytical, diagnostic and therapeutic context of SOX2

References

  1. Mutations in SOX2 cause anophthalmia. Fantes, J., Ragge, N.K., Lynch, S.A., McGill, N.I., Collin, J.R., Howard-Peebles, P.N., Hayward, C., Vivian, A.J., Williamson, K., van Heyningen, V., FitzPatrick, D.R. Nat. Genet. (2003) [Pubmed]
  2. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S.Y., Suemori, H., Nakatsuji, N., Tada, T. Mol. Cell. Biol. (2005) [Pubmed]
  3. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Li, X.L., Eishi, Y., Bai, Y.Q., Sakai, H., Akiyama, Y., Tani, M., Takizawa, T., Koike, M., Yuasa, Y. Int. J. Oncol. (2004) [Pubmed]
  4. Comparative genomics on SOX2 orthologs. Katoh, Y., Katoh, M. Oncol. Rep. (2005) [Pubmed]
  5. Role of SOX2 mutations in human hippocampal malformations and epilepsy. Sisodiya, S.M., Ragge, N.K., Cavalleri, G.L., Hever, A., Lorenz, B., Schneider, A., Williamson, K.A., Stevens, J.M., Free, S.L., Thompson, P.J., van Heyningen, V., Fitzpatrick, D.R. Epilepsia (2006) [Pubmed]
  6. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., Shang, Y. J. Biol. Chem. (2008) [Pubmed]
  7. Control of developmental regulators by Polycomb in human embryonic stem cells. Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H.L., Zucker, J.P., Yuan, B., Bell, G.W., Herbolsheimer, E., Hannett, N.M., Sun, K., Odom, D.T., Otte, A.P., Volkert, T.L., Bartel, D.P., Melton, D.A., Gifford, D.K., Jaenisch, R., Young, R.A. Cell (2006) [Pubmed]
  8. Chipping away at the embryonic stem cell network. Orkin, S.H. Cell (2005) [Pubmed]
  9. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Taranova, O.V., Magness, S.T., Fagan, B.M., Wu, Y., Surzenko, N., Hutton, S.R., Pevny, L.H. Genes Dev. (2006) [Pubmed]
  10. Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Rodriguez-Pinilla, S.M., Sarrio, D., Moreno-Bueno, G., Rodriguez-Gil, Y., Martinez, M.A., Hernandez, L., Hardisson, D., Reis-Filho, J.S., Palacios, J. Mod. Pathol. (2007) [Pubmed]
  11. Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Stevanovic, M. Mol. Biol. Rep. (2003) [Pubmed]
  12. Transcriptional dynamics of the embryonic stem cell switch. Chickarmane, V., Troein, C., Nuber, U.A., Sauro, H.M., Peterson, C. PLoS Comput. Biol. (2006) [Pubmed]
  13. The ovine SOX2 gene: sequence, chromosomal localization and gonadal expression. Payen, E., Pailhoux, E., Gianquinto, L., Hayes, H., Le Pennec, N., Bezard, J., Cotinot, C. Gene (1997) [Pubmed]
  14. Cocaine alters proliferation, migration, and differentiation of human fetal brain-derived neural precursor cells. Hu, S., Cheeran, M.C., Sheng, W.S., Ni, H.T., Lokensgard, J.R., Peterson, P.K. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
  15. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Sanada, Y., Yoshida, K., Ohara, M., Oeda, M., Konishi, K., Tsutani, Y. Pancreas (2006) [Pubmed]
  16. The grb2/mek pathway represses nanog in murine embryonic stem cells. Hamazaki, T., Kehoe, S.M., Nakano, T., Terada, N. Mol. Cell. Biol. (2006) [Pubmed]
  17. Inhibition of DNA binding of Sox2 by the SUMO conjugation. Tsuruzoe, S., Ishihara, K., Uchimura, Y., Watanabe, S., Sekita, Y., Aoto, T., Saitoh, H., Yuasa, Y., Niwa, H., Kawasuji, M., Baba, H., Nakao, M. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  18. Regulation of the FGF-4 gene by a complex distal enhancer that functions in part as an enhanceosome. Luster, T.A., Rizzino, A. Gene (2003) [Pubmed]
  19. Limb mammary syndrome: a new genetic disorder with mammary hypoplasia, ectrodactyly, and other Hand/Foot anomalies maps to human chromosome 3q27. van Bokhoven, H., Jung, M., Smits, A.P., van Beersum, S., Rüschendorf, F., van Steensel, M., Veenstra, M., Tuerlings, J.H., Mariman, E.C., Brunner, H.G., Wienker, T.F., Reis, A., Ropers, H.H., Hamel, B.C. Am. J. Hum. Genet. (1999) [Pubmed]
  20. Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Güre, A.O., Stockert, E., Scanlan, M.J., Keresztes, R.S., Jäger, D., Altorki, N.K., Old, L.J., Chen, Y.T. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  21. Genomic organisation of the human chordin gene and mutation screening of candidate Cornelia de Lange syndrome genes. Smith, M., Herrell, S., Lusher, M., Lako, L., Simpson, C., Wiestner, A., Skoda, R., Ireland, M., Strachan, T. Hum. Genet. (1999) [Pubmed]
  22. Cloning and mapping of platypus SOX2 and SOX14: insights into SOX group B evolution. Kirby, P.J., Waters, P.D., Delbridge, M., Svartman, M., Stewart, A.N., Nagai, K., Graves, J.A. Cytogenet. Genome Res. (2002) [Pubmed]
  23. Klf4 cooperates with oct3/4 and sox2 to activate the lefty1 core promoter in embryonic stem cells. Nakatake, Y., Fukui, N., Iwamatsu, Y., Masui, S., Takahashi, K., Yagi, R., Yagi, K., Miyazaki, J., Matoba, R., Ko, M.S., Niwa, H. Mol. Cell. Biol. (2006) [Pubmed]
  24. Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Tsukamoto, T., Mizoshita, T., Mihara, M., Tanaka, H., Takenaka, Y., Yamamura, Y., Nakamura, S., Ushijima, T., Tatematsu, M. Histopathology (2005) [Pubmed]
  25. Expression of gastric mucin MUC5AC and gastric transcription factor SOX2 in ampulla of vater adenocarcinoma: comparison between expression patterns and histologic subtypes. Sanada, Y., Yoshida, K., Konishi, K., Oeda, M., Ohara, M., Tsutani, Y. Oncol. Rep. (2006) [Pubmed]
  26. Prenatal diagnosis of primary anophthalmia with a 3q27 interstitial deletion involving SOX2. Guichet, A., Triau, S., Lépinard, C., Esculapavit, C., Biquard, F., Descamps, P., Encha-Razavi, F., Bonneau, D. Prenat. Diagn. (2004) [Pubmed]
  27. S/MAR-binding properties of Sox2 and its involvement in apoptosis of human NT2 neural precursors. Lei, J.X., Liu, Q.Y., Sodja, C., LeBlanc, J., Ribecco-Lutkiewicz, M., Smith, B., Charlebois, C., Walker, P.R., Sikorska, M. Cell Death Differ. (2005) [Pubmed]
 
WikiGenes - Universities