The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

POU5F1  -  POU class 5 homeobox 1

Homo sapiens

Synonyms: MGC22487, OCT3, OCT4, OTF-3, OTF3, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of POU5F1

 

Psychiatry related information on POU5F1

  • Moreover, SLC22A3 (which encodes OCT3) is a candidate gene for MAP dependence because it is located within a chromosomal region associated with substance dependence [6].
 

High impact information on POU5F1

  • We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes [7].
  • We found, surprisingly, that OCT4, SOX2, and NANOG co-occupy a substantial portion of their target genes [8].
  • Elevated Nanog expression from transgene constructs is sufficient for clonal expansion of ES cells, bypassing Stat3 and maintaining Oct4 levels [9].
  • Therefore, Oct4 also determines paracrine growth factor signaling from stem cells to the trophectoderm [10].
  • Oct4 is a mammalian POU transcription factor expressed by early embryo cells and germ cells [10].
 

Chemical compound and disease context of POU5F1

 

Biological context of POU5F1

 

Anatomical context of POU5F1

 

Associations of POU5F1 with chemical compounds

  • Of interest, addition of the tyrosine phosphatase inhibitor, sodium vanadate, selectively repressed Nanog transcription without any detectable changes in upstream transcriptional regulators Oct3/4 and Sox2 [19].
  • Genes characteristic of multilineage differentiation potential are also up-regulated in NCCIT extract-treated cells, suggesting the establishment of "multilineage priming." Retinoic acid triggers Oct4 down-regulation, de novo activation of A-type lamins, and nestin [20].
  • Previously described diagnostic and prognostic markers were found to be expressed by the appropriate GCT subtype (AFP, POU5F1, POV1, CCND2, and KIT) [21].
  • We tested a "standard" cryopreservation protocol (slow cooling with 10% DMSO) on the human embryonic stem cell (hESC) line H9 containing an Oct-4 (POU5F1) promoter-driven, enhanced green fluorescent protein (EGFP) reporter to monitor maintenance of pluripotency [22].
  • The POU homeodomain protein Oct-4 and the Forkhead Box protein FoxD3 (previously Genesis) are transcriptional regulators expressed in embryonic stem cells [23].
  • Retinoic acid-mediated differentiation of reprogrammed cells elicits OCT4 promoter remethylation and transcriptional repression [24].
 

Physical interactions of POU5F1

 

Regulatory relationships of POU5F1

  • Furthermore, overexpressing OCT3 stimulated endogenous FGF-4 expression in MCF7 breast cancer cell line [4].
  • The expression of Oct4 is activated by FoxD3 and Nanog but repressed by Oct4 itself, thus, exerting an important negative feedback loop to limit its own activity [26].
 

Other interactions of POU5F1

  • In addition to three known genes, POU5F1, TCF19 and S, this 111 kb fragment contains four new, expressed genes identified in the course of our genomic sequencing of the entire HLA class I region [27].
  • Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma [28].
  • EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12) [1].
  • Together, these facts indicate that POU5F1 and POU2F subfamily members play a pivotal role for the FZD5 expression in undifferentiated human ES cells, fetal liver/spleen, adult colon, pancreatic islet, and diffuse-type gastric cancer [2].
  • Genotypes of Cw6, the CDSN gene, the POU5F1 gene, and the gene for the TNF-alpha promoter region were determined by polymerase chain reaction (PCR) followed by restriction enzyme digestion [13].
 

Analytical, diagnostic and therapeutic context of POU5F1

References

  1. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Yamaguchi, S., Yamazaki, Y., Ishikawa, Y., Kawaguchi, N., Mukai, H., Nakamura, T. Genes Chromosomes Cancer (2005) [Pubmed]
  2. Conserved POU-binding site linked to SP1-binding site within FZD5 promoter: Transcriptional mechanisms of FZD5 in undifferentiated human ES cells, fetal liver/spleen, adult colon, pancreatic islet, and diffuse-type gastric cancer. Katoh, Y., Katoh, M. Int. J. Oncol. (2007) [Pubmed]
  3. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S.Y., Suemori, H., Nakatsuji, N., Tada, T. Mol. Cell. Biol. (2005) [Pubmed]
  4. The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Wang, P., Branch, D.R., Bali, M., Schultz, G.A., Goss, P.E., Jin, T. Biochem. J. (2003) [Pubmed]
  5. Immunohistochemistry as a tool in the differential diagnosis of ovarian tumors: an update. Baker, P.M., Oliva, E. Int. J. Gynecol. Pathol. (2005) [Pubmed]
  6. Association Between Gene Polymorphisms of SLC22A3 and Methamphetamine Use Disorder. Aoyama, N., Takahashi, N., Kitaichi, K., Ishihara, R., Saito, S., Maeno, N., Ji, X., Takagi, K., Sekine, Y., Iyo, M., Harano, M., Komiyama, T., Yamada, M., Sora, I., Ujike, H., Iwata, N., Inada, T., Ozaki, N. Alcohol. Clin. Exp. Res. (2006) [Pubmed]
  7. Control of developmental regulators by Polycomb in human embryonic stem cells. Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H.L., Zucker, J.P., Yuan, B., Bell, G.W., Herbolsheimer, E., Hannett, N.M., Sun, K., Odom, D.T., Otte, A.P., Volkert, T.L., Bartel, D.P., Melton, D.A., Gifford, D.K., Jaenisch, R., Young, R.A. Cell (2006) [Pubmed]
  8. Core transcriptional regulatory circuitry in human embryonic stem cells. Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R., Young, R.A. Cell (2005) [Pubmed]
  9. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., Smith, A. Cell (2003) [Pubmed]
  10. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., Smith, A. Cell (1998) [Pubmed]
  11. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Lee, M.G., Wynder, C., Schmidt, D.M., McCafferty, D.G., Shiekhattar, R. Chem. Biol. (2006) [Pubmed]
  12. OCT4: a novel biomarker for dysgerminoma of the ovary. Cheng, L., Thomas, A., Roth, L.M., Zheng, W., Michael, H., Karim, F.W. Am. J. Surg. Pathol. (2004) [Pubmed]
  13. A study of candidate genes for psoriasis near HLA-C in Chinese patients with psoriasis. Chang, Y.T., Tsai, S.F., Lee, D.D., Shiao, Y.M., Huang, C.Y., Liu, H.N., Wang, W.J., Wong, C.K. Br. J. Dermatol. (2003) [Pubmed]
  14. Transcriptional regulation of nanog by OCT4 and SOX2. Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., Robson, P. J. Biol. Chem. (2005) [Pubmed]
  15. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Takeda, J., Seino, S., Bell, G.I. Nucleic Acids Res. (1992) [Pubmed]
  16. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. Deb-Rinker, P., Ly, D., Jezierski, A., Sikorska, M., Walker, P.R. J. Biol. Chem. (2005) [Pubmed]
  17. Comparative genomics on SOX2 orthologs. Katoh, Y., Katoh, M. Oncol. Rep. (2005) [Pubmed]
  18. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Zhang, J., Tam, W.L., Tong, G.Q., Wu, Q., Chan, H.Y., Soh, B.S., Lou, Y., Yang, J., Ma, Y., Chai, L., Ng, H.H., Lufkin, T., Robson, P., Lim, B. Nat. Cell Biol. (2006) [Pubmed]
  19. The grb2/mek pathway represses nanog in murine embryonic stem cells. Hamazaki, T., Kehoe, S.M., Nakano, T., Terada, N. Mol. Cell. Biol. (2006) [Pubmed]
  20. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Taranger, C.K., Noer, A., Sørensen, A.L., Håkelien, A.M., Boquest, A.C., Collas, P. Mol. Biol. Cell (2005) [Pubmed]
  21. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Juric, D., Sale, S., Hromas, R.A., Yu, R., Wang, Y., Duran, G.E., Tibshirani, R., Einhorn, L.H., Sikic, B.I. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Katkov, I.I., Kim, M.S., Bajpai, R., Altman, Y.S., Mercola, M., Loring, J.F., Terskikh, A.V., Snyder, E.Y., Levine, F. Cryobiology (2006) [Pubmed]
  23. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression. Guo, Y., Costa, R., Ramsey, H., Starnes, T., Vance, G., Robertson, K., Kelley, M., Reinbold, R., Scholer, H., Hromas, R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  24. Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Freberg, C.T., Dahl, J.A., Timoskainen, S., Collas, P. Mol. Biol. Cell (2007) [Pubmed]
  25. Klf4 cooperates with oct3/4 and sox2 to activate the lefty1 core promoter in embryonic stem cells. Nakatake, Y., Fukui, N., Iwamatsu, Y., Masui, S., Takahashi, K., Yagi, R., Yagi, K., Miyazaki, J., Matoba, R., Ko, M.S., Niwa, H. Mol. Cell. Biol. (2006) [Pubmed]
  26. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. Pan, G., Li, J., Zhou, Y., Zheng, H., Pei, D. FASEB J. (2006) [Pubmed]
  27. Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene. Oka, A., Tamiya, G., Tomizawa, M., Ota, M., Katsuyama, Y., Makino, S., Shiina, T., Yoshitome, M., Iizuka, M., Sasao, Y., Iwashita, K., Kawakubo, Y., Sugai, J., Ozawa, A., Ohkido, M., Kimura, M., Bahram, S., Inoko, H. Hum. Mol. Genet. (1999) [Pubmed]
  28. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Almstrup, K., Hoei-Hansen, C.E., Wirkner, U., Blake, J., Schwager, C., Ansorge, W., Nielsen, J.E., Skakkebaek, N.E., Rajpert-De Meyts, E., Leffers, H. Cancer Res. (2004) [Pubmed]
  29. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Looijenga, L.H., Stoop, H., de Leeuw, H.P., de Gouveia Brazao, C.A., Gillis, A.J., van Roozendaal, K.E., van Zoelen, E.J., Weber, R.F., Wolffenbuttel, K.P., van Dekken, H., Honecker, F., Bokemeyer, C., Perlman, E.J., Schneider, D.T., Kononen, J., Sauter, G., Oosterhuis, J.W. Cancer Res. (2003) [Pubmed]
 
WikiGenes - Universities