The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

FBP1  -  fructose-1,6-bisphosphatase 1

Homo sapiens

Synonyms: D-fructose-1,6-bisphosphate 1-phosphohydrolase 1, FBP, FBPase 1, Fructose-1,6-bisphosphatase 1, Liver FBPase
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of FBP1

 

Psychiatry related information on FBP1

  • The capacity for glycolysis in muscle biopsies obtained from long-term heavy alcohol drinking patients has been compared with tissue from control subjects by assay in vitro of the total activities of glycogen phosphorylase, phosphofructokinase and fructose 1,6-bisphosphatase, key regulatory enzymes in the anaerobic glycolytic pathway [6].
 

High impact information on FBP1

  • The protein products of these genes, designated floral binding protein 1 (FBP1) and 2 (FBP2), are putative transcription factors with the MADS box DNA binding domain [7].
  • Our results suggest a regulation of the fbp1 gene expression by the green petals (gp) gene [7].
  • MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes [8].
  • In an effort to find safe and efficacious GNG inhibitors, we targeted the AMP binding site of fructose 1,6-bisphosphatase (FBPase) [8].
  • Thus, we have found the FBPase that was 'missing' in thermophiles and shown that it also functions as an IMPase [9].
 

Chemical compound and disease context of FBP1

 

Biological context of FBP1

 

Anatomical context of FBP1

  • FBP1, together with other members of the family, were all induced in cell cultures by elicitor action although they all showed some expression in non-induced cultured cells [19].
  • We reported the first case of molecular diagnosis of FBPase deficiency, using cultured monocytes as a source for FBPase mRNA [1].
  • Our data also show that this FBPase-encoding mRNA can be activated during monocytic maturation since it was detected in human alveolar macrophages [20].
  • These results suggest that FBPase may participate as a component of a metabolic sensing mechanism present in the pancreas [21].
  • Immunolocalization analysis showed that FBPase is expressed both in human and rat Langerhans islets, specifically in beta cells [21].
 

Associations of FBP1 with chemical compounds

  • In the classic view, F26P(2) regulates glucose metabolism by allosteric effects on 6-phosphofructo-1-kinase (6PFK1, activation) and fructose-1,6-bisphosphatase (FBPase, inhibition) [22].
  • However, FBP1 when expressed in Pichia pastoris generated H2O2 using cysteine at pH 7.2, a specific property of the native protein when isolated from suspension-cultured cells [19].
  • Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 2,6-bisphosphate, AMP, and Zn2+ at 2.0-A resolution: aspects of synergism between inhibitors [23].
  • This gene encodes two closely related mRNAs; one, activated by 1,25-(OH)2D3 at an early stage of HL-60 differentiation, encodes a protein that has homology to mammalian FBPase, a key enzyme in gluconeogenesis, although it does not exhibit its classical enzymatic activity [20].
  • Approximately 50% of the expressed human fructose-1,6-bisphosphatase was soluble and enzymatically active, and the enzyme was purified to homogeneity by heat treatment, ammonium sulfate fractionation, and substrate/AMP elution from carboxymethyl-Sephadex [24].
 

Enzymatic interactions of FBP1

 

Regulatory relationships of FBP1

 

Other interactions of FBP1

 

Analytical, diagnostic and therapeutic context of FBP1

References

  1. Identification of genetic mutations in Japanese patients with fructose-1,6-bisphosphatase deficiency. Kikawa, Y., Inuzuka, M., Jin, B.Y., Kaji, S., Koga, J., Yamamoto, Y., Fujisawa, K., Hata, I., Nakai, A., Shigematsu, Y., Mizunuma, H., Taketo, A., Mayumi, M., Sudo, M. Am. J. Hum. Genet. (1997) [Pubmed]
  2. Human fructose-1,6-bisphosphatase gene (FBP1): exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency. el-Maghrabi, M.R., Lange, A.J., Jiang, W., Yamagata, K., Stoffel, M., Takeda, J., Fernald, A.A., Le Beau, M.M., Bell, G.I., Baker, L. Genomics (1995) [Pubmed]
  3. Fructose-1,6-bisphosphatase: genetic and physical mapping to human chromosome 9q22.3 and evaluation in non-insulin-dependent diabetes mellitus. Rothschild, C.B., Freedman, B.I., Hodge, R., Rao, P.N., Pettenati, M.J., Anderson, R.A., Akots, G., Qadri, A., Roh, B., Fajans, S.S. Genomics (1995) [Pubmed]
  4. HIV-1 p17 and IFN-gamma both induce fructose 1,6-bisphosphatase. Besançon, F., Just, J., Bourgeade, M.F., Van Weyenbergh, J., Solomon, D., Guillozo, H., Wietzerbin, J., Cayre, Y.E. J. Interferon Cytokine Res. (1997) [Pubmed]
  5. Graft ischemia correlates with urinary excretion of the proximal marker enzyme fructose-1,6-bisphosphatase in human kidney transplantation. Kotanko, P., Margreiter, R., Pfaller, W. Nephron (1997) [Pubmed]
  6. Glycogen content and activities of key glycolytic enzymes in muscle biopsies from control subjects and patients with chronic alcoholic skeletal myopathy. Martin, F.C., Levi, A.J., Slavin, G., Peters, T.J. Clin. Sci. (1984) [Pubmed]
  7. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Angenent, G.C., Busscher, M., Franken, J., Mol, J.N., van Tunen, A.J. Plant Cell (1992) [Pubmed]
  8. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Erion, M.D., van Poelje, P.D., Dang, Q., Kasibhatla, S.R., Potter, S.C., Reddy, M.R., Reddy, K.R., Jiang, T., Lipscomb, W.N. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase. Stec, B., Yang, H., Johnson, K.A., Chen, L., Roberts, M.F. Nat. Struct. Biol. (2000) [Pubmed]
  10. Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in zucker diabetic Fatty rats. van Poelje, P.D., Potter, S.C., Chandramouli, V.C., Landau, B.R., Dang, Q., Erion, M.D. Diabetes (2006) [Pubmed]
  11. Destabilizing effects of fructose-1,6-bisphosphate on membrane bilayers. Ehringer, W.D., Su, S., Chiangb, B., Stillwell, W., Chien, S. Lipids (2002) [Pubmed]
  12. Fructose-1,6-biphosphate prevents excitotoxic neuronal cell death in the neonatal mouse brain. Rogido, M., Husson, I., Bonnier, C., Lallemand, M.C., Mérienne, C., Gregory, G.A., Sola, A., Gressens, P. Brain Res. Dev. Brain Res. (2003) [Pubmed]
  13. Pyruvate kinase type M2: a crossroad in the tumor metabolome. Mazurek, S., Grimm, H., Boschek, C.B., Vaupel, P., Eigenbrodt, E. Br. J. Nutr. (2002) [Pubmed]
  14. Evaluation of cultural techniques for isolating Campylobacter pyloridis from endoscopic biopsies of gastric mucosa. Goodwin, C.S., Blincow, E.D., Warren, J.R., Waters, T.E., Sanderson, C.R., Easton, L. J. Clin. Pathol. (1985) [Pubmed]
  15. The whorl-specific action of a petunia class B floral homeotic gene. Tsuchimoto, S., Mayama, T., van der Krol, A., Ohtsubo, E. Genes Cells (2000) [Pubmed]
  16. Two newly identified genomic mutations in a Japanese female patient with fructose-1,6-bisphosphatase (FBPase) deficiency. Matsuura, T., Chinen, Y., Arashiro, R., Katsuren, K., Tamura, T., Hyakuna, N., Ohta, T. Mol. Genet. Metab. (2002) [Pubmed]
  17. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Telang, S., Yalcin, A., Clem, A.L., Bucala, R., Lane, A.N., Eaton, J.W., Chesney, J. Oncogene (2006) [Pubmed]
  18. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney. Yánez, A.J., Nualart, F., Droppelmann, C., Bertinat, R., Brito, M., Concha, I.I., Slebe, J.C. J. Cell. Physiol. (2003) [Pubmed]
  19. Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family. Blee, K.A., Jupe, S.C., Richard, G., Zimmerlin, A., Davies, D.R., Bolwell, G.P. Plant Mol. Biol. (2001) [Pubmed]
  20. Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation. Solomon, D.H., Raynal, M.C., Tejwani, G.A., Cayre, Y.E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  21. Novel expression of liver FBPase in Langerhans islets of human and rat pancreas. Yáñez, A.J., Bertinat, R., Spichiger, C., Carcamo, J.G., de Los Angeles García, M., Concha, I.I., Nualart, F., Slebe, J.C. J. Cell. Physiol. (2005) [Pubmed]
  22. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: Beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Wu, C., Khan, S.A., Peng, L.J., Lange, A.J. Adv. Enzyme Regul. (2006) [Pubmed]
  23. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 2,6-bisphosphate, AMP, and Zn2+ at 2.0-A resolution: aspects of synergism between inhibitors. Xue, Y., Huang, S., Liang, J.Y., Zhang, Y., Lipscomb, W.N. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  24. Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis. el-Maghrabi, M.R., Gidh-Jain, M., Austin, L.R., Pilkis, S.J. J. Biol. Chem. (1993) [Pubmed]
  25. Thiol/disulfide exchange in the thioredoxin-catalyzed reductive activation of spinach chloroplast fructose-1,6-bisphosphatase. Kinetics and thermodynamics. Clancey, C.J., Gilbert, H.F. J. Biol. Chem. (1987) [Pubmed]
  26. Contrasting modes of photosynthetic enzyme regulation in oxygenic and anoxygenic prokaryotes. Crawford, N.A., Sutton, C.W., Yee, B.C., Johnson, T.C., Carlson, D.C., Buchanan, B.B. Arch. Microbiol. (1984) [Pubmed]
  27. Vanadate but not tungstate prevents the fructose-induced increase in GLUT5 expression and fructose uptake by neonatal rat intestine. Kirchner, S., Kwon, E., Muduli, A., Cerqueira, C., Cui, X.L., Ferraris, R.P. J. Nutr. (2006) [Pubmed]
  28. Reductive activation of fructose-1,6-bisphosphatase and the peroxide effect on chloroplast photosynthesis. Slovacek, R.E., Monahan, B.C. Arch. Biochem. Biophys. (1983) [Pubmed]
  29. Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Sully, G., Dean, J.L., Wait, R., Rawlinson, L., Santalucia, T., Saklatvala, J., Clark, A.R. Biochem. J. (2004) [Pubmed]
  30. Regulation of ubiquitous 6-phosphofructo-2-kinase by the ubiquitin-proteasome proteolytic pathway during myogenic C2C12 cell differentiation. Riera, L., Obach, M., Navarro-Sabaté, A., Duran, J., Perales, J.C., Viñals, F., Rosa, J.L., Ventura, F., Bartrons, R. FEBS Lett. (2003) [Pubmed]
  31. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Coombs, G.H., Craft, J.A., Hart, D.T. Mol. Biochem. Parasitol. (1982) [Pubmed]
  32. Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Balmer, Y., Koller, A., Val, G.D., Schürmann, P., Buchanan, B.B. Photosyn. Res. (2004) [Pubmed]
  33. Identification of a genetic mutation in a family with fructose-1,6- bisphosphatase deficiency. Kikawa, Y., Inuzuka, M., Jin, B.Y., Kaji, S., Yamamoto, Y., Shigematsu, Y., Nakai, A., Taketo, A., Ohura, T., Mikami, H. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  34. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. Gibson, N., McAlister-Henn, L. J. Biol. Chem. (2003) [Pubmed]
  35. Characterization of two cDNAs encoding folate-binding proteins from L1210 murine leukemia cells. Increased expression associated with a genomic rearrangement. Brigle, K.E., Westin, E.H., Houghton, M.T., Goldman, I.D. J. Biol. Chem. (1991) [Pubmed]
 
WikiGenes - Universities