The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

sspA  -  stringent starvation protein A, phage P1...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3218, JW3198, pog, ssp
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of sspA

  • Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation [1].
  • The plasmid encoded LlaI R/M system from Lactococcus lactis ssp. lactis consists of a bidomain methylase, with close evolutionary ties to type IIS methylases, and a trisubunit restriction complex [2].
  • Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites [3].
  • Escherichia coli SspA is a transcription activator for bacteriophage P1 late genes [4].
  • As SspA and H-NS are highly conserved among Gram-negative bacteria, of which many are pathogenic, the global role of SspA in the stress response and pathogenesis is discussed [5].
 

High impact information on sspA

 

Chemical compound and disease context of sspA

 

Biological context of sspA

  • Promoters derived from the genes encoding the stringent starvation protein (sspA) from E. coli and S. enterica, but not ansB derived promoters, expressed immunogenic levels of C fragment from multi-copy plasmids in attenuated S. enterica in vivo and, following oral immunization, induced high titre specific anti-tetanus toxoid serum antibodies [11].
  • In addition, the S. enterica sspA promoter is able to elicit anti-tetanus toxoid antibodies in mice when the psspA-tetC expression cassette is integrated in single copy on the S. enterica chromosome [11].
  • In addition, SspA and Lpa were shown to facilitate the binding of RNAP to Ps late promoter DNA [4].
  • RecA relieves negative autoregulation of rdgA, which specifies a component of the RecA-Rdg regulatory circuit controlling pectin lyase production in Erwinia carotovora ssp. carotovora [12].
  • In contrast, phagocytosis of Escherichia coli ssp. was enhanced in both groups (P < 0.001 for both) [13].
 

Anatomical context of sspA

 

Associations of sspA with chemical compounds

  • Long-term (10 d) viability of arginine-starved isogenic strains shows that sspA+ cultures remain viable significantly longer than delta sspA mutants [1].
  • Characterization of a cDNA encoding cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds [17].
  • The 5'-coding region of these cDNAs is highly polymorphic within Solanum tuberosum ssp. tuberosum, containing mainly a simple sequence repeat encoding histidine and aspartate [18].
  • Phytochemical and biological investigation of the roots of the wild Daucus carota ssp. carota afforded three new and four known compounds, including four sesquiterpenes daucane esters (1-3 [new], and 4), one polyacetylene (5), one sesquiterpene coumarin (6), and sitosterol glucoside [19].
  • Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane [20].
 

Other interactions of sspA

 

Analytical, diagnostic and therapeutic context of sspA

  • Therefore, SspA proteins from Yersinia pestis, Vibrio cholerae and Pseudomonas aeruginosa were cloned, expressed, purified and subjected to crystallization trials [23].
  • This represents an interesting phenomenon of molecular evolution of bacterial species, as PCR analysis of the region around the deletion indicates that the deletion is not present in T. brockii ssp. finnii and T. brockii ssp. brockii type strain HTD4 [24].
  • Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) from Lactobacillus delbrückii ssp. lactis DSM7290 [25].
  • Broad spectrum primers were used to amplify a fragment comprising the CP gene and putative ORF6 by RT-PCR from ds-RNA templates originating from 46 Portuguese varieties, totalling 190 samples, including some wild Vitis ssp sylvestris vines, and 2 vines from Slovenia [26].

References

  1. Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Williams, M.D., Ouyang, T.X., Flickinger, M.C. Mol. Microbiol. (1994) [Pubmed]
  2. Control of expression of LlaI restriction in Lactococcus lactis. O'Sullivan, D.J., Klaenhammer, T.R. Mol. Microbiol. (1998) [Pubmed]
  3. Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Liu, Y., Cui, Y., Mukherjee, A., Chatterjee, A.K. Mol. Microbiol. (1998) [Pubmed]
  4. Escherichia coli SspA is a transcription activator for bacteriophage P1 late genes. Hansen, A.M., Lehnherr, H., Wang, X., Mobley, V., Jin, D.J. Mol. Microbiol. (2003) [Pubmed]
  5. SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Hansen, A.M., Qiu, Y., Yeh, N., Blattner, F.R., Durfee, T., Jin, D.J. Mol. Microbiol. (2005) [Pubmed]
  6. Comparative in vitro study in new cephalosporins. Bodey, G.P., Fainstein, V., Hinkle, A.M. Antimicrob. Agents Chemother. (1981) [Pubmed]
  7. Norfloxacin (MK-0366, AM-715): in vitro activity and cross-resistance with other organic acids including quality control limits for disk diffusion testing. Jones, R.N., Barry, A.L. Diagn. Microbiol. Infect. Dis. (1983) [Pubmed]
  8. Identification and characterization of a cystathionine beta/gamma-lyase from Lactococcus lactis ssp. cremoris MG1363. Dobric, N., Limsowtin, G.K., Hillier, A.J., Dudman, N.P., Davidson, B.E. FEMS Microbiol. Lett. (2000) [Pubmed]
  9. Cloning and nucleotide sequence analysis of the Lactobacillus delbrueckii ssp. lactis DSM7290 cysteine aminopeptidase gene pepC. Klein, J.R., Henrich, B., Plapp, R. FEMS Microbiol. Lett. (1994) [Pubmed]
  10. Cloning and expression of the gene encoding alpha-acetolactate decarboxylase from Acetobacter aceti ssp. xylinum in brewer's yeast. Yamano, S., Tanaka, J., Inoue, T. J. Biotechnol. (1994) [Pubmed]
  11. Investigation of ansB and sspA derived promoters for multi- and single-copy antigen expression in attenuated Salmonella enterica var. typhimurium. Terry, T.D., Downes, J.E., Dowideit, S.J., Mabbett, A.N., Jennings, M.P. Vaccine (2005) [Pubmed]
  12. RecA relieves negative autoregulation of rdgA, which specifies a component of the RecA-Rdg regulatory circuit controlling pectin lyase production in Erwinia carotovora ssp. carotovora. Liu, Y., Wang, X., Mukherjee, A., Chatterjee, A.K. Mol. Microbiol. (1996) [Pubmed]
  13. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Schiffrin, E.J., Brassart, D., Servin, A.L., Rochat, F., Donnet-Hughes, A. Am. J. Clin. Nutr. (1997) [Pubmed]
  14. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Hessle, C., Hanson, L.A., Wold, A.E. Clin. Exp. Immunol. (1999) [Pubmed]
  15. Cytopathogenic effect caused by Bacteroides fragilis endotoxin. Sawicka-Grzelak, A., Polna, I., Meisel-Mikolajczyk, F. Journal of hygiene, epidemiology, microbiology, and immunology. (1980) [Pubmed]
  16. Cloning and characterization of plastid ribosomal protein S16 gene from potato (Solanum tuberosum L. cv Désirée). Bae, J.M., Ahn, M.Y., Harn, C.H., Jeong, W.J., Jung, M., Lim, Y.P., Liu, J.R. Mol. Cells (1998) [Pubmed]
  17. Characterization of a cDNA encoding cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds. Lim, C.O., Lee, S.I., Chung, W.S., Park, S.H., Hwang, I., Cho, M.J. Plant Mol. Biol. (1996) [Pubmed]
  18. Functional characterisation of urease accessory protein G (ureG) from potato. Witte, C.P., Isidore, E., Tiller, S.A., Davies, H.V., Taylor, M.A. Plant Mol. Biol. (2001) [Pubmed]
  19. Rare trisubstituted sesquiterpenes daucanes from the wild Daucus carota. Ahmed, A.A., Bishr, M.M., El-Shanawany, M.A., Attia, E.Z., Ross, S.A., Paré, P.W. Phytochemistry (2005) [Pubmed]
  20. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. Matusheski, N.V., Swarup, R., Juvik, J.A., Mithen, R., Bennett, M., Jeffery, E.H. J. Agric. Food Chem. (2006) [Pubmed]
  21. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. Mason, J.M., Hackett, R.H., Setlow, P. J. Bacteriol. (1988) [Pubmed]
  22. The Escherichia coli genes sspA and rnk can functionally replace the Pseudomonas aeruginosa alginate regulatory gene algR2. Schlictman, D., Shankar, S., Chakrabarty, A.M. Mol. Microbiol. (1995) [Pubmed]
  23. Characterization of four orthologs of stringent starvation protein A. Andrykovitch, M., Routzahn, K.M., Li, M., Gu, Y., Waugh, D.S., Ji, X. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  24. Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile thermoanaerobacter ethanolicus. Mai, V., Wiegel, J., Lorenz, W.W. Gene (2000) [Pubmed]
  25. Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) from Lactobacillus delbrückii ssp. lactis DSM7290. Meyer-Barton, E.C., Klein, J.R., Imam, M., Plapp, R. Appl. Microbiol. Biotechnol. (1993) [Pubmed]
  26. Rupestris stem pitting associated virus isolates are composed by mixtures of genomic variants which share a highly conserved coat protein. Nolasco, G., Santos, C., Petrovic, N., Teixeira Santos, M., Cortez, I., Fonseca, F., Boben, J., Nazaré Pereira, A.M., Sequeira, O. Arch. Virol. (2006) [Pubmed]
 
WikiGenes - Universities