The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ompA  -  outer membrane protein A (3a;II*;G;d)

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK0948, JW0940, con, tolG, tut
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ompA

  • Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12 [1].
  • Here we report that the 78 nucleotide SraD RNA, which is highly conserved among Enterobacteriaceae, acts in destabilizing the ompA transcript when rapidly grown cells enter the stationary phase of growth [2].
  • In addition, genes specific to E. coli were also studied: ompA, ompFand tolA (predicting epigenetic variation that could help escape infection by phages or colicins) [3].
  • The ompA gene was fused to the gene (tet) specifying tetracycline resistance and the gene for the major antigen (vp1) of foot-and-mouth disease virus [4].
  • In addition, our results demonstrate the general utility of fusions to lpp-ompA for the efficient display of proteins and the engineering of the surface topology of Gram-negative bacteria [5].
 

High impact information on ompA

  • Highly purified RNAase E correctly processed E. coli 5S ribosomal RNA, bacteriophage T4 gene 32 mRNA and E. coli ompA mRNA at sites known to depend on the rne gene for cleavage in vivo [6].
  • Thus the 5' noncoding region appears to be a determinant of mRNA stability, and endonucleolytic cleavages in the 5' noncoding region may well regulate expression of the ompA gene [7].
  • The stabilities of two of these species, the transcripts of the ompA and cat genes, exhibited a marked dependence on cell growth rate, whereas the half lives of the transcripts of the lpp and bla genes are constant over a broad range of cell doubling times [8].
  • Here, we present the first direct demonstration that 30S ribosomes bound to the ompA 5'-UTR protect the transcript from RNase E cleavage in vitro [9].
  • Thus, the regulation of ompA mRNA stability meets the physiological needs to adjust the level of ompA expression to the rate of cell division [9].
 

Chemical compound and disease context of ompA

 

Biological context of ompA

 

Anatomical context of ompA

 

Associations of ompA with chemical compounds

  • In addition, deletion of ompA reduced biofilm mass by 80% in both LB medium and LB medium with glucose [23].
  • The VH-linker-VL structure was blunt-cloned into expression vectors bearing the tryptophan promoter and pelB or ompA signal peptide sequences [24].
  • Some individuals had antibodies reacting very strongly with the iron-regulated outer membrane proteins, including the ferric-enterochelin receptor protein (Mr, 81,000), as well as with ompA [25].
  • The beta-lactam antibiotic cephalexin prevents the insertion of newly synthesized ompA protein into the poles but removal of the antibiotic allows the randomly dispersed protein to migrate to the polar and possibly the septal areas of the cell [26].
 

Physical interactions of ompA

  • The SraD-mediated decay of ompA mRNA depends on Hfq and in vitro studies revealed that Hfq facilitates binding of the regulatory RNA to the translational initiation region of the messenger [2].
 

Other interactions of ompA

  • Stable E. coli mRNAs such as lpp and ompA were drastically destabilized immediately after infection [17].
  • Expression of lacZ from the ompA or by foreign ompA alleles which are not expressed in E. coli K-12 [27].
  • Antisera were raised against the purified Escherichia coli K12 outer membrane proteins ompA-, ompC- and ompF proteins and protein e [28].
  • An E. coli strain deleted for the ppk gene showed increased stability of the ompA mRNA [29].
  • Deletion of sraD, however, does not significantly affect the stability of the ompA mRNA in slowly growing cells [2].
 

Analytical, diagnostic and therapeutic context of ompA

References

  1. Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12. Chen, R., Schmidmayr, W., Krämer, C., Chen-Schmeisser, U., Henning, U. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  2. Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Rasmussen, A.A., Eriksen, M., Gilany, K., Udesen, C., Franch, T., Petersen, C., Valentin-Hansen, P. Mol. Microbiol. (2005) [Pubmed]
  3. Global analysis of genomic texts: the distribution of AGCT tetranucleotides in the Escherichia coli and Bacillus subtilis genomes predicts translational frameshifting and ribosomal hopping in several genes. Hénaut, A., Lisacek, F., Nitschké, P., Moszer, I., Danchin, A. Electrophoresis (1998) [Pubmed]
  4. Gene fusions using the ompA gene coding for a major outer-membrane protein of Escherichia coli K12. Henning, U., Cole, S.T., Bremer, E., Hindennach, I., Schaller, H. Eur. J. Biochem. (1983) [Pubmed]
  5. Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Francisco, J.A., Stathopoulos, C., Warren, R.A., Kilburn, D.G., Georgiou, G. Biotechnology (N.Y.) (1993) [Pubmed]
  6. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Carpousis, A.J., Van Houwe, G., Ehretsmann, C., Krisch, H.M. Cell (1994) [Pubmed]
  7. Site-specific endonucleolytic cleavages and the regulation of stability of E. coli ompA mRNA. Melefors, O., von Gabain, A. Cell (1988) [Pubmed]
  8. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nilsson, G., Belasco, J.G., Cohen, S.N., von Gabain, A. Nature (1984) [Pubmed]
  9. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Vytvytska, O., Moll, I., Kaberdin, V.R., von Gabain, A., Bläsi, U. Genes Dev. (2000) [Pubmed]
  10. Outer membrane of Escherichia coli K-12: differentiation of proteins 3A and 3B on acrylamide gels and further characterization of con (tolG) mutants. Manning, P.A., Reeves, P. J. Bacteriol. (1976) [Pubmed]
  11. A class of ompA mutants of Escherichia coli K12 affected in the interaction of ompA protein and the core region of lipopolysaccharide. Puspurs, A., Medon, P., Corless, C., Hackett, J., Reeves, P. Mol. Gen. Genet. (1983) [Pubmed]
  12. Cyclic AMP stimulates transcription of the structural gene of the outer-membrane protein OmpA of Escherichia coli. Gibert, I., Barbé, J. FEMS Microbiol. Lett. (1990) [Pubmed]
  13. The influence of amino substitutions within the mature part of an Escherichia coli outer membrane protein (OmpA) on assembly of the polypeptide into its membrane. Klose, M., MacIntyre, S., Schwarz, H., Henning, U. J. Biol. Chem. (1988) [Pubmed]
  14. The function of OmpA in Escherichia coli. Wang, Y. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  15. Regulatory region of the gene for the ompA protein, a major outer membrane protein of Escherichia coli. Movva, N.R., Nakamura, K., Inouye, M. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  16. Nucleotide sequence of the gene ompA coding the outer membrane protein II of Escherichia coli K-12. Beck, E., Bremer, E. Nucleic Acids Res. (1980) [Pubmed]
  17. Phage-induced change in the stability of mRNAs. Ueno, H., Yonesaki, T. Virology (2004) [Pubmed]
  18. Differential binding of Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Torres, A.G., Jeter, C., Langley, W., Matthysse, A.G. Appl. Environ. Microbiol. (2005) [Pubmed]
  19. Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. Sonnleitner, E., Moll, I., Bläsi, U. Microbiology (Reading, Engl.) (2002) [Pubmed]
  20. Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Huang, S.H., Stins, M.F., Kim, K.S. Microbes Infect. (2000) [Pubmed]
  21. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. Anand, N.N., Mandal, S., MacKenzie, C.R., Sadowska, J., Sigurskjold, B., Young, N.M., Bundle, D.R., Narang, S.A. J. Biol. Chem. (1991) [Pubmed]
  22. Inhibition of apoptosis by Escherichia coli K1 is accompanied by increased expression of BclXL and blockade of mitochondrial cytochrome c release in macrophages. Sukumaran, S.K., Selvaraj, S.K., Prasadarao, N.V. Infect. Immun. (2004) [Pubmed]
  23. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Barrios, A.F., Zuo, R., Ren, D., Wood, T.K. Biotechnol. Bioeng. (2006) [Pubmed]
  24. Bacterial single-chain antibody fragments, specific for carcinoembryonic antigen. Ayala, M., Dueñas, M., Santos, A., Vázquez, J., Menéndez, A., Silva, A., Gavilondo, J.V. BioTechniques (1992) [Pubmed]
  25. Naturally occurring antibodies in human sera that react with the iron-regulated outer membrane proteins of Escherichia coli. Griffiths, E., Stevenson, P., Thorpe, R., Chart, H. Infect. Immun. (1985) [Pubmed]
  26. Concentration of a major outer membrane protein at the cell poles in Escherichia coli. Begg, K.J., Donachie, W.D. J. Gen. Microbiol. (1984) [Pubmed]
  27. Regulation of the OmpA outer membrane protein of Escherichia coli. Beher, M.G., Schnaitman, C.A. J. Bacteriol. (1981) [Pubmed]
  28. Antigenic relationships between pore proteins of Escherichia coli K12. Overbeeke, N., Van Scharrenburg, G., Lugtenberg, B. Eur. J. Biochem. (1980) [Pubmed]
  29. Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Blum, E., Py, B., Carpousis, A.J., Higgins, C.F. Mol. Microbiol. (1997) [Pubmed]
  30. The crystallization of outer membrane proteins from Escherichia coli. Studies on lamB and ompA gene products. Garavito, R.M., Hinz, U., Neuhaus, J.M. J. Biol. Chem. (1984) [Pubmed]
  31. Immobilization of cells with surface-displayed chitin-binding domain. Wang, J.Y., Chao, Y.P. Appl. Environ. Microbiol. (2006) [Pubmed]
  32. The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Mohanty, B.K., Kushner, S.R. Nucleic Acids Res. (2006) [Pubmed]
  33. Identification and characterization of the Treponema pallidum tpn50 gene, an ompA homolog. Hardham, J.M., Stamm, L.V. Infect. Immun. (1994) [Pubmed]
 
WikiGenes - Universities