The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Yellow Fever

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Yellow Fever

 

High impact information on Yellow Fever

 

Chemical compound and disease context of Yellow Fever

 

Biological context of Yellow Fever

  • The yellow fever virus genome was detected in postmortem liver biopsies by seminested polymerase chain reaction [16].
  • To gain further insight into NS1 function, we used clustered charged-amino-acid-to-alanine mutagenesis to create 28 clustered substitutions in the NS1 protein of yellow fever virus [17].
  • The kinetics of MxA gene expression was analyzed in peripheral blood mononuclear cells from 11 healthy volunteers vaccinated with the 17-D strain of yellow fever virus [18].
  • Sixteen monoclonal antibodies that reacted with the envelope glycoprotein (E) of 17D vaccine strain yellow fever virus (17D YF), including two antibodies produced against dengue 2 virus, were used in a solid phase competitive binding assay (CBA) to define spatial relationships among antigenic determinants on 17D YF E [19].
  • Thus the gene order for KUN virus relative to that proposed for yellow fever (YF) virus was as follows: KUN 5'...GP44.P19.P10.P71.(?).P21.P98-3', YF 5'...NS1.ns2a.ns2b.NS3.ns4a.ns4b.NS5 -3'. The identity of GP44 as NS1 was assumed from the known nucleotide and deduced amino acid sequences; ns4a was not identified [20].
 

Anatomical context of Yellow Fever

 

Gene context of Yellow Fever

  • Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-gamma)-deficient (IFN-gamma knockout [GKO]) C57BL/6 mice [26].
  • Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever [22].
  • ELISA testing, a less complex and less time-consuming test, correlates well with PRNT and is proposed for additional trials to measure yellow fever 17D vaccine response in flavivirus non-immune subjects [27].
  • Previously, we found that the insect midgut, a main site of iron load, is also a primary site of ferritin expression and that, in the yellow fever mosquito, Aedes aegypti, the expression of the ferritin heavy-chain homologue (HCH) is induced following blood feeding [28].
  • Three Toll-related genes (AeToll1A, AeToll1B and AeToll5) were cloned and characterized from the yellow fever vector mosquito, Aedes aegypti [29].
 

Analytical, diagnostic and therapeutic context of Yellow Fever

References

  1. Shortage of vaccines during a yellow fever outbreak in Guinea. Nathan, N., Barry, M., Van Herp, M., Zeller, H. Lancet (2001) [Pubmed]
  2. Vaccinations for adult solid-organ transplant recipients: current recommendations and protocols. Duchini, A., Goss, J.A., Karpen, S., Pockros, P.J. Clin. Microbiol. Rev. (2003) [Pubmed]
  3. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. Schlesinger, J.J., Brandriss, M.W., Walsh, E.E. J. Immunol. (1985) [Pubmed]
  4. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. Whitby, K., Pierson, T.C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R.W., Diamond, M.S. J. Virol. (2005) [Pubmed]
  5. RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. Warrener, P., Tamura, J.K., Collett, M.S. J. Virol. (1993) [Pubmed]
  6. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Chambers, T.J., Weir, R.C., Grakoui, A., McCourt, D.W., Bazan, J.F., Fletterick, R.J., Rice, C.M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  7. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. Shin, S.W., Kokoza, V., Bian, G., Cheon, H.M., Kim, Y.J., Raikhel, A.S. J. Biol. Chem. (2005) [Pubmed]
  8. The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35-A resolution. Dyer, D.H., Lovell, S., Thoden, J.B., Holden, H.M., Rayment, I., Lan, Q. J. Biol. Chem. (2003) [Pubmed]
  9. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine. Bonnevie-Nielsen, V., Larsen, M.L., Frifelt, J.J., Michelsen, B., Lernmark, A. Diabetes (1989) [Pubmed]
  10. Neuroblastoma cell-adapted yellow fever 17D virus: characterization of a viral variant associated with persistent infection and decreased virus spread. Vlaycheva, L.A., Chambers, T.J. J. Virol. (2002) [Pubmed]
  11. Effect of diet on the metabolic response to infection: protein-sparing modified fast plus 100 grams glucose and yellow fever immunization. Bistrian, B.R., George, D.T., Blackburn, G.L., Wannemacher, R.W. Am. J. Clin. Nutr. (1981) [Pubmed]
  12. Chloroquine does not adversely affect the antibody response to yellow fever vaccine. Tsai, T.F., Bolin, R.A., Lazuick, J.S., Miller, K.D. J. Infect. Dis. (1986) [Pubmed]
  13. Bivalent cholera and typhoid vaccine. Foster, R.H., Noble, S. Drugs (1999) [Pubmed]
  14. Glutathione biosynthesis in the aging adult yellow-fever mosquito [Aedes aegypti (Louisville)]. Hazelton, G.A., Lang, C.A. Biochem. J. (1983) [Pubmed]
  15. Synergistic antiviral effects of ribavirin and the C-nucleoside analogs tiazofurin and selenazofurin against togaviruses, bunyaviruses, and arenaviruses. Huggins, J.W., Robins, R.K., Canonico, P.G. Antimicrob. Agents Chemother. (1984) [Pubmed]
  16. First case of yellow fever in French Guiana since 1902. Heraud, J.M., Hommel, D., Hulin, A., Deubel, V., Poveda, J.D., Sarthou, J.L., Talarmin, A. Emerging Infect. Dis. (1999) [Pubmed]
  17. Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. Muylaert, I.R., Galler, R., Rice, C.M. J. Virol. (1997) [Pubmed]
  18. MxA gene expression after live virus vaccination: a sensitive marker for endogenous type I interferon. Roers, A., Hochkeppel, H.K., Horisberger, M.A., Hovanessian, A., Haller, O. J. Infect. Dis. (1994) [Pubmed]
  19. Analysis of 17D yellow fever virus envelope protein epitopes using monoclonal antibodies. Schlesinger, J.J., Walsh, E.E., Brandriss, M.W. J. Gen. Virol. (1984) [Pubmed]
  20. Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. Speight, G., Coia, G., Parker, M.D., Westaway, E.G. J. Gen. Virol. (1988) [Pubmed]
  21. Human cytotoxic T lymphocyte responses to live attenuated 17D yellow fever vaccine: identification of HLA-B35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E. Co, M.D., Terajima, M., Cruz, J., Ennis, F.A., Rothman, A.L. Virology (2002) [Pubmed]
  22. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity. Quaresma, J.A., Barros, V.L., Pagliari, C., Fernandes, E.R., Guedes, F., Takakura, C.F., Andrade, H.F., Vasconcelos, P.F., Duarte, M.I. Virology (2006) [Pubmed]
  23. Stimulation of JH biosynthesis by the corpora allata of adult female Aedes aegypti in vitro: effect of farnesoic acid and Aedes allatotropin. Li, Y., Unnithan, G.C., Veenstra, J.A., Feyereisen, R., Noriega, F.G. J. Exp. Biol. (2003) [Pubmed]
  24. The concentration-dependence of CRF-like diuretic peptide: mechanisms of action. Clark, T.M., Hayes, T.K., Holman, G.M., Beyenbach, K.W. J. Exp. Biol. (1998) [Pubmed]
  25. A factor Xa-directed anticoagulant from the salivary glands of the yellow fever mosquito Aedes aegypti. Stark, K.R., James, A.A. Exp. Parasitol. (1995) [Pubmed]
  26. Yellow fever virus encephalitis: properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4+ lymphocytes. Liu, T., Chambers, T.J. J. Virol. (2001) [Pubmed]
  27. The effect of chloroquine prophylaxis on yellow fever vaccine antibody response: comparison of plaque reduction neutralization test and enzyme-linked immunosorbent assay. Barry, M., Patterson, J.E., Tirrell, S., Cullen, M.R., Shope, R.E. Am. J. Trop. Med. Hyg. (1991) [Pubmed]
  28. Aedes aegypti ferritin. Geiser, D.L., Chavez, C.A., Flores-Munguia, R., Winzerling, J.J., Pham, D.Q. Eur. J. Biochem. (2003) [Pubmed]
  29. Characterization of three Toll-like genes from mosquito Aedes aegypti. Luna, C., Hoa, N.T., Zhang, J., Kanzok, S.M., Brown, S.E., Imler, J.L., Knudson, D.L., Zheng, L. Insect Mol. Biol. (2003) [Pubmed]
  30. Antibody response to 17D yellow fever vaccine in Ghanaian infants. Osei-Kwasi, M., Dunyo, S.K., Koram, K.A., Afari, E.A., Odoom, J.K., Nkrumah, F.K. Bull. World Health Organ. (2001) [Pubmed]
  31. Evaluation of recombinant dengue viral envelope B domain protein antigens for the detection of dengue complex-specific antibodies. Simmons, M., Porter, K.R., Escamilla, J., Graham, R., Watts, D.M., Eckels, K.H., Hayes, C.G. Am. J. Trop. Med. Hyg. (1998) [Pubmed]
  32. Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Vaughan, A., Rocheleau, T., ffrench-Constant, R. Exp. Parasitol. (1997) [Pubmed]
  33. Rapid, single-step RT-PCR typing of dengue viruses using five NS3 gene primers. Seah, C.L., Chow, V.T., Tan, H.C., Can, Y.C. J. Virol. Methods (1995) [Pubmed]
 
WikiGenes - Universities