The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Diabetic Foot

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Diabetic Foot

 

High impact information on Diabetic Foot

  • As loss of nociception and axon-reflex vasodilation contribute to diabetic foot ulceration, early and prolonged NGF treatment at an appropriate dose may provide rational prophylaxis for this condition [6].
  • Interestingly, we documented the absence of leptin receptor expression in human diabetic foot ulcers [7].
  • Effect of medial arterial calcification on O2 supply to exercising diabetic feet [8].
  • Evaluation of granulocyte-colony stimulating factor (Filgrastim) in infected diabetic foot ulcers [9].
  • RESULTS: The concentration of MMP-1 was increased 65-fold in biopsies of diabetic foot ulcers compared with the concentrations measured in biopsies of traumatic wounds [10].
 

Chemical compound and disease context of Diabetic Foot

 

Biological context of Diabetic Foot

 

Anatomical context of Diabetic Foot

 

Gene context of Diabetic Foot

  • However, TGF-beta1 expression was not increased in diabetic foot ulcers and chronic venous ulcers, and was comparable to diabetic and normal skin [25].
  • Staining for IGF2 was intense in both normal and diabetic skin as well as in diabetic foot ulcers, being greatest at the ulcer edge [21].
  • CONCLUSION/INTERPRETATION: The combination of increased concentrations of MMPs with decreased concentrations of TIMP-2 in chronic diabetic foot ulcers compared with healing wounds in normal patients suggests that the increased proteolytic environment contributes to the failure of diabetic wounds to heal [10].
  • CONCLUSIONS: MRSA and enterococci are now a common cause of diabetic foot infections, and the increased prevalence may be due to antimicrobial use [26].
  • Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers [27].
 

Analytical, diagnostic and therapeutic context of Diabetic Foot

References

  1. Amdinocillin plus cefoxitin versus cefoxitin alone in therapy of mixed soft tissue infections (including diabetic foot infections). File, T.M., Tan, J.S. Am. J. Med. (1983) [Pubmed]
  2. Streptococcus sanguis bacteremia during ciprofloxacin therapy of a diabetic foot ulcer. Ohl, C.A., Sullivan, N., Paparello, S. Am. J. Med. (1994) [Pubmed]
  3. The Biogun: A novel way of eradicating methicillin-resistant Staphylococcus aureus colonization in diabetic foot ulcers. Dang, C.N., Anwar, R., Thomas, G., Prasad, Y.D., Boulton, A.J., Malik, R.A. Diabetes Care (2006) [Pubmed]
  4. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Legat, F.J., Maier, A., Dittrich, P., Zenahlik, P., Kern, T., Nuhsbaumer, S., Frossard, M., Salmhofer, W., Kerl, H., Müller, M. Antimicrob. Agents Chemother. (2003) [Pubmed]
  5. Ertapenem: a review of its use in the treatment of bacterial infections. Keating, G.M., Perry, C.M. Drugs (2005) [Pubmed]
  6. The role of endogenous nerve growth factor in human diabetic neuropathy. Anand, P., Terenghi, G., Warner, G., Kopelman, P., Williams-Chestnut, R.E., Sinicropi, D.V. Nat. Med. (1996) [Pubmed]
  7. Leptin and wound inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a potential role for the scab as a sink for inflammatory cells and mediators. Goren, I., Kämpfer, H., Podda, M., Pfeilschifter, J., Frank, S. Diabetes (2003) [Pubmed]
  8. Effect of medial arterial calcification on O2 supply to exercising diabetic feet. Chantelau, E., Ma, X.Y., Herrnberger, S., Dohmen, C., Trappe, P., Baba, T. Diabetes (1990) [Pubmed]
  9. Evaluation of granulocyte-colony stimulating factor (Filgrastim) in infected diabetic foot ulcers. Kästenbauer, T., Hörnlein, B., Sokol, G., Irsigler, K. Diabetologia (2003) [Pubmed]
  10. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Lobmann, R., Ambrosch, A., Schultz, G., Waldmann, K., Schiweck, S., Lehnert, H. Diabetologia (2002) [Pubmed]
  11. Response to "Topical phenytoin in diabetic foot ulcers". Kumar, S., Boulton, A.J. Diabetes Care (1992) [Pubmed]
  12. Promotion and acceleration of diabetic ulcer healing by arginine-glycine-aspartic acid (RGD) peptide matrix. RGD Study Group. Steed, D.L., Ricotta, J.J., Prendergast, J.J., Kaplan, R.J., Webster, M.W., McGill, J.B., Schwartz, S.L. Diabetes Care (1995) [Pubmed]
  13. Penetration of piperacillin and tazobactam into inflamed soft tissue of patients with diabetic foot infection. Legat, F.J., Krause, R., Zenahlik, P., Hoffmann, C., Scholz, S., Salmhofer, W., Tscherpel, J., Tscherpel, T., Kerl, H., Dittrich, P. Antimicrob. Agents Chemother. (2005) [Pubmed]
  14. Evaluation of infectious diabetic foot complications with indium-111-labeled human nonspecific immunoglobulin G. Oyen, W.J., Netten, P.M., Lemmens, J.A., Claessens, R.A., Lutterman, J.A., van der Vliet, J.A., Goris, R.J., van der Meer, J.W., Corstens, F.H. J. Nucl. Med. (1992) [Pubmed]
  15. In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Edmiston, C.E., Krepel, C.J., Seabrook, G.R., Somberg, L.R., Nakeeb, A., Cambria, R.A., Towne, J.B. Antimicrob. Agents Chemother. (2004) [Pubmed]
  16. 2003 William J. Stickel Silver Award. Skin temperatures as a one-time screening tool do not predict future diabetic foot complications. Armstrong, D.G., Lavery, L.A., Wunderlich, R.P., Boulton, A.J. Journal of the American Podiatric Medical Association. (2003) [Pubmed]
  17. Bacteriology of 100 consecutive diabetic foot infections and in vitro susceptibility to ampicillin/sulbactam versus cefoxitin. Borrero, E., Rossini, M. Angiology. (1992) [Pubmed]
  18. Skin substitutes to enhance wound healing. Mansbridge, J. Expert opinion on investigational drugs. (1998) [Pubmed]
  19. Promoting primary healing after ray amputations in the diabetic foot: the plantar dermo-fat pad flap. Altindas, M., Atindas, M., Cinar, C. Plast. Reconstr. Surg. (2005) [Pubmed]
  20. An evaluation of the efficacy of methods used in screening for lower-limb arterial disease in diabetes. Williams, D.T., Harding, K.G., Price, P. Diabetes Care (2005) [Pubmed]
  21. Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. Blakytny, R., Jude, E.B., Martin Gibson, J., Boulton, A.J., Ferguson, M.W. J. Pathol. (2000) [Pubmed]
  22. Computed tomography to visualize and quantify the plantar aponeurosis and flexor hallucis longus tendon in the diabetic foot. Bolton, N.R., Smith, K.E., Pilgram, T.K., Mueller, M.J., Bae, K.T. Clinical biomechanics (Bristol, Avon) (2005) [Pubmed]
  23. Adjunctive granulocyte colony-stimulating factor therapy for diabetic foot infections. Reed, K.S., Pai, M.P. The Annals of pharmacotherapy. (2004) [Pubmed]
  24. Use of indium-111-labeled white blood cells in the diagnosis of diabetic foot infections. Zeiger, L.S., Fox, I.M. The Journal of foot surgery. (1990) [Pubmed]
  25. Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers. Jude, E.B., Blakytny, R., Bulmer, J., Boulton, A.J., Ferguson, M.W. Diabet. Med. (2002) [Pubmed]
  26. Diabetic foot infections. Bacteriology and activity of 10 oral antimicrobial agents against bacteria isolated from consecutive cases. Goldstein, E.J., Citron, D.M., Nesbit, C.A. Diabetes Care (1996) [Pubmed]
  27. Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Nagai, M.K., Embil, J.M. Expert opinion on biological therapy. (2002) [Pubmed]
  28. Are granulocyte colony-stimulating factors beneficial in treating diabetic foot infections?: A meta-analysis. Cruciani, M., Lipsky, B.A., Mengoli, C., de Lalla, F. Diabetes Care (2005) [Pubmed]
  29. Rapid healing of intractable diabetic foot ulcers with exposed bones following a novel therapy of exposing bone marrow cells and then grafting epidermal sheets. Yamaguchi, Y., Yoshida, S., Sumikawa, Y., Kubo, T., Hosokawa, K., Ozawa, K., Hearing, V.J., Yoshikawa, K., Itami, S. Br. J. Dermatol. (2004) [Pubmed]
  30. Comparison of Tc-99m methylene diphosphonate, Tc-99m human immune globulin, and Tc-99m-labeled white blood cell scintigraphy in the diabetic foot. Unal, S.N., Birinci, H., Baktiroğlu, S., Cantez, S. Clinical nuclear medicine. (2001) [Pubmed]
 
WikiGenes - Universities