The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cobra


High impact information on Cobra

  • We conclude that anticholinesterases are beneficial in the management of neurotoxic envenoming by Asian cobras (Naja naja), and we recommended a test of edrophonium in any patient with signs of neurotoxic envenoming after snakebite [6].
  • Positive response to edrophonium in patients with neurotoxic envenoming by cobras (Naja naja philippinensis). A placebo-controlled study [6].
  • The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue [7].
  • Evidence is presented that cobra venom factor, the anticomplementary protein in Naja naja venom, is modified cobra C3 (the third component of complement) [8].
  • In order to block acetylcholine receptors of muscle, the alpha toxin of the Formosan cobra (Naja naja atra) was given intravenously to rats [9].

Chemical compound and disease context of Cobra

  • When co-inhibited with Naja naja phospholipase A2 or histamine the peptide did not modify the swelling at doses up to 500 ng, showing at 5 micrograms an additive edema with Naja naja phospholipase A2 [10].
  • The basic phospholipase A2 from Naja nigricollis snake venom is cardiotoxic, causing decreased contractility and arrhythmias at concentrations which induce low levels of phospholipid hydrolysis [11].
  • Effect of calcium and phosphate ions on hemolysis induced by Pyrularia thionin and Naja naja kaouthia cardiotoxin [12].
  • We report here the construction of cardiotoxin V gene, from cobra snake venom (Naja naja atra), by chemically synthesized oligonucleotides and its expression as a glutathione S-transferase-cardiotoxin fusion protein in the inclusion bodies of Escherichia coli [13].
  • We report that sphingosine directly inhibits phospholipases A2 and D. Sphingosine inhibits Ca(2+)-dependent phospholipases A2 from Naja naja, porcine pancreas, Crotalus adamanteus, human disc and neutrophil in a dose-dependent manner with IC50 values ranging from 5-40 microM using [1-14C]oleate-labelled autoclaved E. coli (20 microM) as substrate [14].

Biological context of Cobra

  • Perturbation of the surface phospholipid monolayer of the emulsion particle as a result of hydrolysis by Naja naja phospholipase A2 resulted in a 10-fold activation of LPL, providing further support for an interfacial penetration model [15].
  • The complete amino acid sequence of a cardiotoxin from the venom of Naja naja (Cambodian Cobra) [16].
  • METHODS: In this study we measured and analysed the inhibitory effect of ranitidine bismuth citrate (RBC, Pylorid, Tritec) on the activity and kinetics of phospholipase A2 (PLA2) (E.C. of commercial cobra (Naja naja) venom and H. pylori (French press lysates) using L-alpha-dipalmitoyl-(2[1-14C]palmitoyl)-phosphatidylcholine as substrate [3].
  • Conformational studies of neurotoxin II from Naja naja oxiana. Selective N-acylation, circular dichroism and nuclear-magnetic-resonance study of acylation products [17].
  • Ircinin inhibited Naja naja venom, human synovial recombinant, bee venom and zymosan-injected rat air pouch PLA2 with IC50 values in the microM range, similar to those of the known inhibitor scalaradial [18].

Anatomical context of Cobra

  • We have studied the stoichiometry of the binding of the long alpha-neurotoxins from the venom of Dendroaspis viridis (alpha-dendrotoxin) and Naja naja siamensis (alpha-cobratoxin) to the membrane-bound acetylcholine receptor (AcChoR) from Torpedo californica electric organ [19].
  • The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor [20].
  • Cardiotoxin isolated from Naja mossambica mossambica selectively deactivates the sodium-potassium activated adenosine triphosphatase of axonal membranes [21].
  • In the present study, the inactivation of the phospholipases A2 from pig pancreas, bee venom, and cobra (Naja naja naja) venom by manoalogue was studied in detail [22].
  • The effect of a cardiotoxic component of the venom of the indian cobra (Naja nigricollis) on the subcellular structure and function of heart muscle [23].

Associations of Cobra with chemical compounds

  • A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR) [24].
  • Phospholipase A2 (PLA2) from Indian cobra venom (Naja naja naja) was crystallized from ethanol in space group P4(3)2(1)2 in the presence of Ca2+ [25].
  • Exposure of receptor-rich membrane fragments from Torpedo marmorata to carbamylcholine causes a slow (half-time of 5--10 min) and reversible change of properties of the cholinergic receptor protein manifested by a decrease of the initial rate of Naja nigricollis alpha-[3H]toxin binding in the presence of carbamylcholine [26].
  • The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine [27].
  • A peptide of acetylcholinesterase (AcChoEase; acetylcholine acetylhydrolase, EC from the venom of the cobra Naja naja oxiana labeled by the affinity reagent N,N-dimethyl-2-phenylaziridinium (DPA) has been identified [28].

Gene context of Cobra

  • In comparison, sPLA2 from Naja naja venom (Group I) also showed only modest activity with this substrate [29].
  • A von Willebrand factor (vWF)-binding and -cleaving metalloproteinase, termed "kaouthiagin", was purified from the venom of cobra snake Naja kaouthia [30].
  • For instance, the RMSd for the backbone atoms between MTX2 and the curaremimetic toxin alpha (from Naja nigricollis), the acetylcholinesterase inhibitor fasciculin 1 (from Dendroaspis angusticeps), and the cardiotoxic toxin gamma (from Naja nigricollis) are 1.86, 1.87, and 2.04 A, respectively [31].
  • Our data show that recombinant human enzyme PLA2 (0.01-10 micrograms/pouch), but not Naja mocambique mocambique (Group 2 PLA2) and porcine pancreatic PLA2 (Group 1 PLA2), was able to exacerbate the inflammatory response without increasing eicosanoid release [32].
  • We have observed that a wide variety of cells in culture contain high levels of endogenous PLase that can be activated by polypeptide toxins, such as melittin purified from bee venom and direct lytic factor purified from the venom of African Ringhals cobra (Hemachatus hemachatus) [33].

Analytical, diagnostic and therapeutic context of Cobra


  1. Human recombinant lipocortin 1 has acute local anti-inflammatory properties in the rat paw edema test. Cirino, G., Peers, S.H., Flower, R.J., Browning, J.L., Pepinsky, R.B. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  2. Stimulation of prostaglandin E2 synthesis by exogenous phospholipase A2 and C in rabbit kidney medulla slices. Fujimoto, Y., Akamatsu, N., Hattori, A., Fujita, T. Biochem. J. (1984) [Pubmed]
  3. Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis. Ottlecz, A., Romero, J.J., Lichtenberger, L.M. Aliment. Pharmacol. Ther. (1999) [Pubmed]
  4. Acetylcholine receptors in the ciliary ganglion and in the iris muscle of the chick: specific binding and effect on the synaptic transmission of the neurotoxin from Naja naja siamensis. Conti-Tronconi, B., Gotti, C., Paggi, P., Rossi, A. Br. J. Pharmacol. (1979) [Pubmed]
  5. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane. Fletcher, J.E., Jiang, M.S., Tripolitis, L., Smith, L.A., Beech, J. Toxicon (1990) [Pubmed]
  6. Positive response to edrophonium in patients with neurotoxic envenoming by cobras (Naja naja philippinensis). A placebo-controlled study. Watt, G., Theakston, R.D., Hayes, C.G., Yambao, M.L., Sangalang, R., Ranoa, C.P., Alquizalas, E., Warrell, D.A. N. Engl. J. Med. (1986) [Pubmed]
  7. Interfacial catalysis: the mechanism of phospholipase A2. Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., Sigler, P.B. Science (1990) [Pubmed]
  8. Cobra venom factor: evidence for its being altered cobra C3 (the third component of complement). Alper, C.A., Balavitch, D. Science (1976) [Pubmed]
  9. Blockade of acetylcholine receptors: a model of myasthenia gravis. Satyamurti, S., Drachman, D.B., Slone, F. Science (1975) [Pubmed]
  10. Modulation of the inflammatory response by corticotropin-releasing factor. Correa, S.G., Riera, C.M., Spiess, J., Bianco, I.D. Eur. J. Pharmacol. (1997) [Pubmed]
  11. Cardiotoxicity of Naja nigricollis phospholipase A2 is not due to alterations in prostaglandin synthesis. Barrington, P.L., Soons, K.R., Rosenberg, P. Toxicon (1986) [Pubmed]
  12. Effect of calcium and phosphate ions on hemolysis induced by Pyrularia thionin and Naja naja kaouthia cardiotoxin. Vernon, L.P., Rogers, A. Toxicon (1992) [Pubmed]
  13. Expression of glutathione S-transferase-cardiotoxin fusion protein in Escherichia coli. Chi, L.M., Vyas, A.A., Rule, G.S., Wu, W.G. Toxicon (1994) [Pubmed]
  14. Sphingolipid metabolism and signal transduction: inhibition of in vitro phospholipase activity by sphingosine. Franson, R.C., Harris, L.K., Ghosh, S.S., Rosenthal, M.D. Biochim. Biophys. Acta (1992) [Pubmed]
  15. Effect of lipid composition on lipoprotein lipase activity measured by a continuous fluorescence assay: effect of cholesterol supports an interfacial surface penetration model. Lobo, L.I., Wilton, D.C. Biochem. J. (1997) [Pubmed]
  16. The complete amino acid sequence of a cardiotoxin from the venom of Naja naja (Cambodian Cobra). Fryklund, L., Eaker, D. Biochemistry (1975) [Pubmed]
  17. Conformational studies of neurotoxin II from Naja naja oxiana. Selective N-acylation, circular dichroism and nuclear-magnetic-resonance study of acylation products. Tsetlin, V.I., Arseniev, A.S., Utkin, Y.N., Gurevich, A.Z., Senyavina, L.B., Bystrov, V.F., Ivanov, V.T., Ovchinnikov, Y.A. Eur. J. Biochem. (1979) [Pubmed]
  18. Inhibition of phospholipase A2 activities and some inflammatory responses by the marine product ircinin. Cholbi, R., Ferrándiz, M.L., Terencio, M.C., De Rosa, S., Alcaraz, M.J., Payá, M. Naunyn Schmiedebergs Arch. Pharmacol. (1996) [Pubmed]
  19. Nicotinic acetylcholine receptor contains multiple binding sites: evidence from binding of alpha-dendrotoxin. Conti-Tronconi, B.M., Raftery, M.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. Biochemical characterization of two nicotinic receptors from the optic lobe of the chick. Schneider, M., Adee, C., Betz, H., Schmidt, J. J. Biol. Chem. (1985) [Pubmed]
  21. Molecular mechanism of cardiotoxin action on axonal membranes. Vincent, J.P., Schweitz, H., Chicheportiche, R., Fosset, M., Balerna, M., Lenoir, M.C., Lazdunski, M. Biochemistry (1976) [Pubmed]
  22. Kinetic characterization of phospholipase A2 modified by manoalogue. Ghomashchi, F., Yu, B.Z., Mihelich, E.D., Jain, M.K., Gelb, M.H. Biochemistry (1991) [Pubmed]
  23. The effect of a cardiotoxic component of the venom of the indian cobra (Naja nigricollis) on the subcellular structure and function of heart muscle. Nayler, W.G., Sullivan, A.T., Dunnett, J., Slade, A.M., Trethewie, E.R. J. Mol. Cell. Cardiol. (1976) [Pubmed]
  24. Photolabeling reveals the proximity of the alpha-neurotoxin binding site to the M2 helix of the ion channel in the nicotinic acetylcholine receptor. Machold, J., Utkin, Y., Kirsch, D., Kaufmann, R., Tsetlin, V., Hucho, F. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  25. Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association. Fremont, D.H., Anderson, D.H., Wilson, I.A., Dennis, E.A., Xuong, N.H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata. Weber, M., David-Pfeuty, T., Changeux, J.P. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  27. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit. Neumann, D., Barchan, D., Fridkin, M., Fuchs, S. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  28. Anionic subsites of the catalytic center of acetylcholinesterase from Torpedo and from cobra venom. Kreienkamp, H.J., Weise, C., Raba, R., Aaviksaar, A., Hucho, F. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  29. Cardiolipin hydrolysis by human phospholipases A2. The multiple enzymatic activities of human cytosolic phospholipase A2. Buckland, A.G., Kinkaid, A.R., Wilton, D.C. Biochim. Biophys. Acta (1998) [Pubmed]
  30. Purification and characterization of kaouthiagin, a von Willebrand factor-binding and -cleaving metalloproteinase from Naha kaouthia cobra venom. Hamako, J., Matsui, T., Nishida, S., Nomura, S., Fujimura, Y., Ito, M., Ozeki, Y., Titani, K. Thromb. Haemost. (1998) [Pubmed]
  31. Solution structure of a green mamba toxin that activates muscarinic acetylcholine receptors, as studied by nuclear magnetic resonance and molecular modeling. Ségalas, I., Roumestand, C., Zinn-Justin, S., Gilquin, B., Ménez, R., Ménez, A., Toma, F. Biochemistry (1995) [Pubmed]
  32. Recombinant secreted nonpancreatic phospholipase A2 induces a synovitis-like inflammation in the rat air pouch. Cirino, G., Cicala, C., Sorrentino, L., Maiello, F.M., Browning, J.L. J. Rheumatol. (1994) [Pubmed]
  33. Activation of high levels of endogenous phospholipase A2 in cultured cells. Shier, W.T. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  34. Circular dichroism study of the unfolding-refolding of a cardiotoxin from Taiwan cobra (Naja naja atra) venom. Gałat, A., Yang, C.C., Blout, E.R. Biochemistry (1985) [Pubmed]
  35. Highly efficient immobilization of phospholipase A2 and its biomedical applications. Shen, Z., Cho, W. J. Lipid Res. (1995) [Pubmed]
  36. Interaction of modified neurotoxins from Naja nigricollis with the nicotinic acetylcholine receptor from Torpedo marmorata. A Raman spectroscopy study. Négrerie, M., Aslanian, D., Bouet, F., Ménez, A., Nghiêm, H.O., Changeux, J.P. FEBS Lett. (1991) [Pubmed]
  37. Cobra venom acetylcholinesterase: nature of charge isoforms. Raba, R., Aaviksaar, A. Eur. J. Biochem. (1982) [Pubmed]
  38. Non-steroidal anti-inflammatory drugs as potent inhibitors of phospholipase A2: structure of the complex of phospholipase A2 with niflumic acid at 2.5 Angstroms resolution. Jabeen, T., Singh, N., Singh, R.K., Sharma, S., Somvanshi, R.K., Dey, S., Singh, T.P. Acta Crystallogr. D Biol. Crystallogr. (2005) [Pubmed]
WikiGenes - Universities