The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

XANTHENE     9H-xanthene

Synonyms: Xanthan, XANTHAN GUM, SureCN4267, X201_ALDRICH, AGN-PC-0DBFRS, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Xanthan

  • Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries [1].
  • Use of xanthan gum in dietary management of diabetes mellitus [2].
  • Compared to production by P. alginolyticus, a 30-fold increase in volumetric productivity of soluble xanthan lyase was achieved by heterologous production in E. coli [3].
  • Changes in subjective sensations due to xerostomia before and after administration of Xialine, a xanthan gum-based saliva substitute, were evaluated in 30 patients with radiation-induced xerostomia using the QLQ-H&N35 [4].
  • phi L7 is a lytic bacteriophage infecting Xanthomonas campestris pv. campestris, a Gram-negative bacterium producing xanthan gum and causing black rot in crucifers [5].
 

Psychiatry related information on Xanthan

  • To minimize the effects of olfaction, texture and postingestive effects, rats were rendered anosmic with intranasal zinc sulfate, test substances were suspended in 0.3% xanthan gum solution and test fluids were offered for 5 min [6].
 

High impact information on Xanthan

  • The extracellular polysaccharide xanthan is shown by electron microscopy to be an unbranched, probably double-stranded fiber 4 nanometers wide and 2 to 10 micrometers long when native [7].
  • Other areas included microbial nutrition, strain improvement, bioconversions of statins and beta-lactams, sporulation and germination, plasmid stability, gel microdroplets, and the production of double-stranded RNA, the polymer xanthan, and enzymes (polygalacturonase, protease, cellulase) [8].
  • The crystal structures of xanthan lyase and its complex with the product (pyruvylated mannose) were refined at 2.3 and 2.4 A resolution with final R-factors of 17.5 and 16.9%, respectively [9].
  • Results from dialysis and fermentation predicted the action of wheat bran, pectin, guar, gum arabic, carboxymethylcellulose, gellan, tragacanth, xanthan, and karaya in humans and generated anomalous results for karaya and tragacanth [10].
  • A 1:1 mixture of xanthan and locust bean gum (X/LBG) had the greatest viscosity at equivalent concentrations and shear rates and was more effective than guar gum, xanthan, or locust-bean gum at inhibiting glucose movement in vitro [11].
 

Chemical compound and disease context of Xanthan

 

Biological context of Xanthan

  • The biphasic region is substantially wider than observed for xanthan, another semirigid polyelectrolyte approximately twice as stiff as DNA, primarily because of low critical concentrations for first appearance of the anisotropic phase, C(i)*, in DNA samples > or =110 nm (320 base pairs) long [17].
  • Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta [18].
  • The gum gene cluster of Xanthomonas campestris pv. campestris comprises 12 genes whose products are involved in the biosynthesis of the extracellular polysaccharide xanthan [18].
  • Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation [19].
  • Locations of eight eps loci involved in exopolysaccharide (xanthan gum) synthesis, two rrn operons each possessing an unique I-CeuI site, one pig cluster required for yellow pigmentation, and nine auxotrophic markers were determined, using mutants isolated by mutagenesis with Tn5(pfm)CmKm [19].
 

Anatomical context of Xanthan

  • Immune responses to xanthan gum. I. The characteristics of lymphocyte activation by xanthan gum [20].
  • The xanthan-induced increase in intraluminal water in the small intestine was partially due to a slowed absorption of osmotically active substances from the gut [21].
  • The amount and distribution of water, dry matter, and sugars in the digestive tract of rats fed xanthan gum [21].
  • Monoclonal antibodies specific for the exopolysaccharide xanthan side chain labeled the bacteria, the fibrillar matrix, and portions of the host cell wall [22].
  • Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process [23].
 

Associations of Xanthan with other chemical compounds

 

Gene context of Xanthan

  • These experiments showed that the A. xylinum celB gene could not complement the role of the bifunctional X. campestris phosphoglucomutase-phosphomannomutase gene in xanthan biosynthesis [28].
  • The recA mutation is not correlated with the frequency of occurrence of a genetic rearrangement that affects chemotaxis, plant virulence, and xanthan gum production [29].
  • Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris [30].
  • A subclone of the gum gene cluster carrying gumB and gumC restored xanthan production to strain 8397 to levels approximately 28% of the wild-type [30].
  • The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot [31].
 

Analytical, diagnostic and therapeutic context of Xanthan

References

  1. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. da Silva, A.C., Ferro, J.A., Reinach, F.C., Farah, C.S., Furlan, L.R., Quaggio, R.B., Monteiro-Vitorello, C.B., Van Sluys, M.A., Almeida, N.F., Alves, L.M., do Amaral, A.M., Bertolini, M.C., Camargo, L.E., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L.P., Cicarelli, R.M., Coutinho, L.L., Cursino-Santos, J.R., El-Dorry, H., Faria, J.B., Ferreira, A.J., Ferreira, R.C., Ferro, M.I., Formighieri, E.F., Franco, M.C., Greggio, C.C., Gruber, A., Katsuyama, A.M., Kishi, L.T., Leite, R.P., Lemos, E.G., Lemos, M.V., Locali, E.C., Machado, M.A., Madeira, A.M., Martinez-Rossi, N.M., Martins, E.C., Meidanis, J., Menck, C.F., Miyaki, C.Y., Moon, D.H., Moreira, L.M., Novo, M.T., Okura, V.K., Oliveira, M.C., Oliveira, V.R., Pereira, H.A., Rossi, A., Sena, J.A., Silva, C., de Souza, R.F., Spinola, L.A., Takita, M.A., Tamura, R.E., Teixeira, E.C., Tezza, R.I., Trindade dos Santos, M., Truffi, D., Tsai, S.M., White, F.F., Setubal, J.C., Kitajima, J.P. Nature (2002) [Pubmed]
  2. Use of xanthan gum in dietary management of diabetes mellitus. Osilesi, O., Trout, D.L., Glover, E.E., Harper, S.M., Koh, E.T., Behall, K.M., O'Dorisio, T.M., Tartt, J. Am. J. Clin. Nutr. (1985) [Pubmed]
  3. A novel gene encoding xanthan lyase of Paenibacillus alginolyticus strain XL-1. Ruijssenaars, H.J., Hartmans, S., Verdoes, J.C. Appl. Environ. Microbiol. (2000) [Pubmed]
  4. The efficacy of Xialine in patients with xerostomia resulting from radiotherapy for head and neck cancer: a pilot-study. Jellema, A.P., Langendijk, H., Bergenhenegouwen, L., van der Reijden, W., Leemans, R., Smeele, L., Slotman, B.J. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. (2001) [Pubmed]
  5. Involvement of tonB-exbBD1D2 operon in infection of Xanthomonas campestris phage phi L7. Hung, C.H., Yang, C.F., Yang, C.Y., Tseng, Y.H. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  6. Role of gustation in the recognition of oleate and triolein in anosmic rats. Fukuwatari, T., Shibata, K., Iguchi, K., Saeki, T., Iwata, A., Tani, K., Sugimoto, E., Fushiki, T. Physiol. Behav. (2003) [Pubmed]
  7. Multistranded helix in xanthan polysaccharide. Holzwarth, G., Prestridge, E.B. Science (1977) [Pubmed]
  8. Pickles, pectin, and penicillin. Demain, A.L. Annu. Rev. Microbiol. (2004) [Pubmed]
  9. Crystal structure of Bacillus sp. GL1 xanthan lyase, which acts on the side chains of xanthan. Hashimoto, W., Nankai, H., Mikami, B., Murata, K. J. Biol. Chem. (2003) [Pubmed]
  10. Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. Adiotomre, J., Eastwood, M.A., Edwards, C.A., Brydon, W.G. Am. J. Clin. Nutr. (1990) [Pubmed]
  11. Viscosity of food gums determined in vitro related to their hypoglycemic actions. Edwards, C.A., Blackburn, N.A., Craigen, L., Davison, P., Tomlin, J., Sugden, K., Johnson, I.T., Read, N.W. Am. J. Clin. Nutr. (1987) [Pubmed]
  12. Functional characterization of GumK, a membrane-associated beta-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Barreras, M., Abdian, P.L., Ielpi, L. Glycobiology (2004) [Pubmed]
  13. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Fu, J.F., Tseng, Y.H. Appl. Environ. Microbiol. (1990) [Pubmed]
  14. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. Ielpi, L., Couso, R.O., Dankert, M.A. J. Bacteriol. (1993) [Pubmed]
  15. Clustering of mutations blocking synthesis of xanthan gum by Xanthomonas campestris. Thorne, L., Tansey, L., Pollock, T.J. J. Bacteriol. (1987) [Pubmed]
  16. Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage (phi)L7 adsorption. Hung, C.H., Wu, H.C., Tseng, Y.H. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  17. DNA length and concentration dependencies of anisotropic phase transitions of DNA solutions. Merchant, K., Rill, R.L. Biophys. J. (1997) [Pubmed]
  18. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Vojnov, A.A., Slater, H., Daniels, M.J., Dow, J.M. Mol. Plant Microbe Interact. (2001) [Pubmed]
  19. Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation. Tseng, Y.H., Choy, K.T., Hung, C.H., Lin, N.T., Liu, J.Y., Lou, C.H., Yang, B.Y., Wen, F.S., Weng, S.F., Wu, J.R. J. Bacteriol. (1999) [Pubmed]
  20. Immune responses to xanthan gum. I. The characteristics of lymphocyte activation by xanthan gum. Ishizaka, S., Sugawara, I., Hasuma, T., Morisawa, S., Möller, G. Eur. J. Immunol. (1983) [Pubmed]
  21. The amount and distribution of water, dry matter, and sugars in the digestive tract of rats fed xanthan gum. Trout, D.L., Ryan, R.O., Bickard, M.C. Proc. Soc. Exp. Biol. Med. (1983) [Pubmed]
  22. Extracellular polysaccharides from Xanthomonas axonopodis pv. manihotis interact with cassava cell walls during pathogenesis. Boher, B., Nicole, M., Potin, M., Geiger, J.P. Mol. Plant Microbe Interact. (1997) [Pubmed]
  23. Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Cinquin, C., Le Blay, G., Fliss, I., Lacroix, C. Microb. Ecol. (2004) [Pubmed]
  24. Polyelectrolyte and surfactant mixed solutions. behavior at surfaces and in thin films. Langevin, D. Advances in colloid and interface science. (2001) [Pubmed]
  25. Development of SPC-ELISA: a new assay principle for the study of sulfated polysaccharide-protein interactions. Alban, S., Gastpar, R. Journal of biomolecular screening : the official journal of the Society for Biomolecular Screening. (2001) [Pubmed]
  26. Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Rivard, C.H., Yahia, L. J. Biomed. Mater. Res. (2000) [Pubmed]
  27. Flocculation effect of xanthan gum in pharmaceutical suspensions. Tempio, J.S., Zatz, J.L. Journal of pharmaceutical sciences. (1980) [Pubmed]
  28. Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Blatny, J.M., Brautaset, T., Winther-Larsen, H.C., Haugan, K., Valla, S. Appl. Environ. Microbiol. (1997) [Pubmed]
  29. Evaluation of the role of recA protein in plant virulence with recA mutants of Xanthomonas campestris pv. campestris. Martínez, S., Martínez-Salazar, J., Camas, A., Sánchez, R., Soberón-Chávez, G. Mol. Plant Microbe Interact. (1997) [Pubmed]
  30. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Vojnov, A.A., Zorreguieta, A., Dow, J.M., Daniels, M.J., Dankert, M.A. Microbiology (Reading, Engl.) (1998) [Pubmed]
  31. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Chou, F.L., Chou, H.C., Lin, Y.S., Yang, B.Y., Lin, N.T., Weng, S.F., Tseng, Y.H. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  32. Polysaccharide lyase: molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. strain GL1. Hashimoto, W., Miki, H., Tsuchiya, N., Nankai, H., Murata, K. Appl. Environ. Microbiol. (2001) [Pubmed]
  33. Modification of rectal absorption of morphine from hollow-type suppositories with a combination of alpha-cyclodextrin and viscosity-enhancing polysaccharide. Uekama, K., Kondo, T., Nakamura, K., Irie, T., Arakawa, K., Shibuya, M., Tanaka, J. Journal of pharmaceutical sciences. (1995) [Pubmed]
  34. Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism. Rao, Y.M., Sureshkumar, G.K. Biotechnol. Bioeng. (2001) [Pubmed]
  35. Intracellular compounds quantification by means of flow cytometry in bacteria: application to xanthan production by Xanthomonas campestris. García-Ochoa, F., Santos, V.E., Alcón, A. Biotechnol. Bioeng. (1998) [Pubmed]
 
WikiGenes - Universities