The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Electromagnetic Fields

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Electromagnetic Fields


Psychiatry related information on Electromagnetic Fields


High impact information on Electromagnetic Fields


Chemical compound and disease context of Electromagnetic Fields


Biological context of Electromagnetic Fields


Anatomical context of Electromagnetic Fields


Associations of Electromagnetic Fields with chemical compounds


Gene context of Electromagnetic Fields


Analytical, diagnostic and therapeutic context of Electromagnetic Fields


  1. Stimulation of Src family protein-tyrosine kinases as a proximal and mandatory step for SYK kinase-dependent phospholipase Cgamma2 activation in lymphoma B cells exposed to low energy electromagnetic fields. Dibirdik, I., Kristupaitis, D., Kurosaki, T., Tuel-Ahlgren, L., Chu, A., Pond, D., Tuong, D., Luben, R., Uckun, F.M. J. Biol. Chem. (1998) [Pubmed]
  2. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. Shankar, V.S., Simon, B.J., Bax, C.M., Pazianas, M., Moonga, B.S., Adebanjo, O.A., Zaidi, M. J. Cell. Physiol. (1998) [Pubmed]
  3. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields. Girgert, R., Schimming, H., Körner, W., Gründker, C., Hanf, V. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  4. Cytogenetic effects of pulsing electromagnetic field on human lymphocytes in vitro: chromosome aberrations, sister-chromatid exchanges and cell kinetics. Khalil, A.M., Qassem, W. Mutat. Res. (1991) [Pubmed]
  5. Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Grant, G., Cadossi, R., Steinberg, G. Bioelectromagnetics. (1994) [Pubmed]
  6. Electromagnetic field exposure may cause increased production of amyloid beta and eventually lead to Alzheimer's disease. Sobel, E., Davanipour, Z. Neurology (1996) [Pubmed]
  7. Hyperactivity caused by a nitric oxide synthase inhibitor is countered by ultra-wideband pulses. Seaman, R.L., Belt, M.L., Doyle, J.M., Mathur, S.P. Bioelectromagnetics. (1999) [Pubmed]
  8. Weak electromagnetic fields increase the amplitude of the pattern reversal VEP response in patients with multiple sclerosis. Sandyk, R. Int. J. Neurosci. (1996) [Pubmed]
  9. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Bawin, S.M., Adey, W.R., Sabbot, I.M. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  10. Lyn and syk tyrosine kinases are not activated in B-lineage lymphoid cells exposed to low-energy electromagnetic fields. Woods, M., Bobanovic, F., Brown, D., Alexander, D.R. FASEB J. (2000) [Pubmed]
  11. Transferrin binding to two human colon carcinoma cell lines: characterization and effect of 60-Hz electromagnetic fields. Phillips, J.L., Rutledge, L., Winters, W.D. Cancer Res. (1986) [Pubmed]
  12. Macroscopic thermal entanglement due to radiation pressure. Ferreira, A., Guerreiro, A., Vedral, V. Phys. Rev. Lett. (2006) [Pubmed]
  13. Surface-magnetic-field and fast-electron current-layer formation by ultraintense laser irradiation. Nakamura, T., Kato, S., Nagatomo, H., Mima, K. Phys. Rev. Lett. (2004) [Pubmed]
  14. Stimulation of Bruton's tyrosine kinase (BTK) and inositol 1,4,5-trisphosphate production in leukemia and lymphoma cells exposed to low energy electromagnetic fields. Dibirdik, I., Bofenkamp, M., Skeben, P., Uckun, F. Leuk. Lymphoma (2000) [Pubmed]
  15. Immunotoxic and hematotoxic effects of occupational exposures. Lisiewicz, J. Folia medica Cracoviensia. (1993) [Pubmed]
  16. Multiple sclerosis among utility workers. Johansen, C., Koch-Henriksen, N., Rasmussen, S., Olsen, J.H. Neurology (1999) [Pubmed]
  17. Microdialysis assessment of 5-fluorouracil release from thermosensitive magnetoliposomes induced by an electromagnetic field in tumor-bearing mice. Viroonchatapan, E., Sato, H., Ueno, M., Adachi, I., Murata, J., Saiki, I., Tazawa, K., Horikoshi, I. Journal of drug targeting. (1998) [Pubmed]
  18. Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Tian, F., Nakahara, T., Yoshida, M., Honda, N., Hirose, H., Miyakoshi, J. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  19. Effects of PEMF on a murine osteosarcoma cell line: drug-resistant (P-glycoprotein-positive) and non-resistant cells. Miyagi, N., Sato, K., Rong, Y., Yamamura, S., Katagiri, H., Kobayashi, K., Iwata, H. Bioelectromagnetics. (2000) [Pubmed]
  20. Ets1 oncogene induction by ELF-modulated 50 MHz radiofrequency electromagnetic field. Romano-Spica, V., Mucci, N., Ursini, C.L., Ianni, A., Bhat, N.K. Bioelectromagnetics. (2000) [Pubmed]
  21. 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands. Sukhotina, I., Streckert, J.R., Bitz, A.K., Hansen, V.W., Lerchl, A. J. Pineal Res. (2006) [Pubmed]
  22. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Varani, K., Gessi, S., Merighi, S., Iannotta, V., Cattabriga, E., Spisani, S., Cadossi, R., Borea, P.A. Br. J. Pharmacol. (2002) [Pubmed]
  23. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. Lohmann, C.H., Schwartz, Z., Liu, Y., Li, Z., Simon, B.J., Sylvia, V.L., Dean, D.D., Bonewald, L.F., Donahue, H.J., Boyan, B.D. J. Orthop. Res. (2003) [Pubmed]
  24. Exposure to low-frequency electromagnetic fields does not alter HSP70 expression or HSF-HSE binding in HL60 cells. Morehouse, C.A., Owen, R.D. Radiat. Res. (2000) [Pubmed]
  25. Electron-electron interaction in strong electromagnetic fields: the two-electron contribution to the ground-state energy in He-like uranium. Gumberidze, A., Stöhlker, T., Banaś, D., Beckert, K., Beller, P., Beyer, H.F., Bosch, F., Cai, X., Hagmann, S., Kozhuharov, C., Liesen, D., Nolden, F., Ma, X., Mokler, P.H., Orsić-Muthig, A., Steck, M., Sierpowski, D., Tashenov, S., Warczak, A., Zou, Y. Phys. Rev. Lett. (2004) [Pubmed]
  26. Toward a glucose biosensor based on surface-enhanced Raman scattering. Shafer-Peltier, K.E., Haynes, C.L., Glucksberg, M.R., Van Duyne, R.P. J. Am. Chem. Soc. (2003) [Pubmed]
  27. The relationship between electromagnetic field and light exposures to melatonin and breast cancer risk: a review of the relevant literature. Brainard, G.C., Kavet, R., Kheifets, L.I. J. Pineal Res. (1999) [Pubmed]
  28. Increase in nitric oxide and cyclic GMP of rat cerebellum by radio frequency burst-type electromagnetic field radiation. Miura, M., Takayama, K., Okada, J. J. Physiol. (Lond.) (1993) [Pubmed]
  29. Ultraviolet resonance Raman and absorption difference spectroscopy of myoglobins: titration behavior of individual tyrosine residues. Asher, S.A., Larkin, P.J., Teraoka, J. Biochemistry (1991) [Pubmed]
  30. Increased levels of inducible HSP70 in cells exposed to electromagnetic fields. Alfieri, R.R., Bonelli, M.A., Pedrazzi, G., Desenzani, S., Ghillani, M., Fumarola, C., Ghibelli, L., Borghetti, A.F., Petronini, P.G. Radiat. Res. (2006) [Pubmed]
  31. ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. Jin, M., Blank, M., Goodman, R. J. Cell. Biochem. (2000) [Pubmed]
  32. Effect of electromagnetic fields on several CD markers and transcription and expression of CD4. Conti, P., Reale, M., Grilli, A., Barbacane, R.C., Di Luzio, S., Di Gioacchino, M., De Lutiis, M.A., Felaco, M. Immunobiology (1999) [Pubmed]
  33. Effects of short term exposure to 60 Hz electromagnetic fields on interleukin 1 and interleukin 6 production by peritoneal exudate cells. Morandi, M.A., Del Rio, J.A., Caren, R.P., Caren, L.D. Life Sci. (1994) [Pubmed]
  34. Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. Cossarizza, A., Monti, D., Bersani, F., Paganelli, R., Montagnani, G., Cadossi, R., Cantini, M., Franceschi, C. FEBS Lett. (1989) [Pubmed]
  35. The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement. Darendeliler, M.A., Sinclair, P.M., Kusy, R.P. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. (1995) [Pubmed]
  36. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays. Schmidt, J.P., Cross, S.E., Buratto, S.K. The Journal of chemical physics. (2004) [Pubmed]
  37. Zinc prevention of electromagnetically induced damage to rat testicle and kidney tissues. Ozturk, A., Baltaci, A.K., Mogulkoc, R., Oztekin, E. Biological trace element research. (2003) [Pubmed]
  38. Theoretical studies of the kinetics of methane hydrate crystallization in external electromagnetic fields. English, N.J., MacElroy, J.M. The Journal of chemical physics. (2004) [Pubmed]
WikiGenes - Universities