The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Algae, Green

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Algae, Green


High impact information on Algae, Green

  • The binding of cytochrome c6 to PSI in green algae involves interaction of a negative patch with a positive domain of PSI [4].
  • We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome [5].
  • The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria [5].
  • Three of the Nephroselmis genes (nad10, rpl14, and rnpB) have not been identified in previously sequenced mtDNAs of green algae and land plants [6].
  • Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin [7].

Chemical compound and disease context of Algae, Green


Biological context of Algae, Green


Anatomical context of Algae, Green

  • The chloroplast genome of chromophytic and rhodophytic algae differs from the plastid genome of plants and green algae in that it encodes the gene for the small subunit (rbcS) of ribulose 1,5-bisphosphate carboxylase/oxygenase [18].
  • The results presented here show that this is a general property of D1 as it can be demonstrated in thylakoids of cyanophytes, Dasicladaceae, green algae, and C3 and C4 plants [19].
  • We report that green algae and human centrin delay cleavage and promote the formation of abnormal blastomeres in which the distribution of microtubule asters and of nuclei is dramatically impaired [20].
  • Lobomonas piriformis is a member of an order of green algae (Volvocales) that have crystalline glycoprotein cell walls [21].
  • The cytoplasm (with its organelles) of intact cells of Ernodesmis verticillata (Chlorophyta) can be induced to contract in the presence of calcium ionophores and phenothiazine antipsychotics [22].

Associations of Algae, Green with chemical compounds

  • The central photochemical reaction in photosystem II of green algae and plants and the reaction center of some photosynthetic bacteria involves a one-electron transfer from a light-activated chlorin complex to a bound quinone molecule [23].
  • Unlike higher plants and green algae, the genes encoding the large and the small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase are chloroplast-encoded and closely associated (Hwang and Tabita, 1989) [24].
  • Earlier work using mutants and heterologous expression has shown that a high-affinity nitrate transport system from the unicellular green algae, Chlamydomonas reinhardtii required two gene products for function [25].
  • We provide evidence that ammonium, nitrate, and light regulate GS transcript accumulation in green algae [26].
  • Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians [27].

Gene context of Algae, Green

  • Here we report that centrins from yeast, green algae, and humans bound with high affinity to a peptide of the yeast centrosomal component Kar1p [28].
  • These experiments along with sequence analysis disclosed the presence, in both green algae, of a single IA1 intron in the psaB gene and of two group I introns (IA2 and IA1) in the psbC gene [29].
  • The C. paradoxa petF gene predicts a protein of 99 amino acids (aa) which is more similar to type-I ferredoxins of diverse cyanobacteria than to those of green algae, dinoflagellates, and higher plants [30].
  • The chlL gene product is involved in the light-independent synthesis of chlorophyll in photosynthetic bacteria, green algae and non-flowering plants [31].
  • In this study we compared sequences of the rbcL (Rubisco large subunit-encoding) genes of pyrenoid-less Chloromonas species with those of closely related pyrenoid-containing Chlamydomonas species in the "Chloromonas lineage" and with those of 45 other green algae [32].

Analytical, diagnostic and therapeutic context of Algae, Green


  1. Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Meagher, R.B., Berry-Lowe, S., Rice, K. Genetics (1989) [Pubmed]
  2. Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Lee, D.Y., Fortin, C., Campbell, P.G. Aquat. Toxicol. (2005) [Pubmed]
  3. Stimulatory effect of procaine on the growth of several microalgae and cyanobacteria. Suzuki, T., Ezure, T., Yamaguchi, T., Domen, H., Ishida, M., Schmidt, W. J. Pharm. Pharmacol. (2000) [Pubmed]
  4. Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. Beissinger, M., Sticht, H., Sutter, M., Ejchart, A., Haehnel, W., Rösch, P. EMBO J. (1998) [Pubmed]
  5. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Turmel, M., Otis, C., Lemieux, C. Plant Cell (2003) [Pubmed]
  6. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Turmel, M., Lemieux, C., Burger, G., Lang, B.F., Otis, C., Plante, I., Gray, M.W. Plant Cell (1999) [Pubmed]
  7. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Li, X., Gutierrez, D.V., Hanson, M.G., Han, J., Mark, M.D., Chiel, H., Hegemann, P., Landmesser, L.T., Herlitze, S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Aquatic toxicity evaluation of para-methylstyrene. Baer, K.N., Boeri, R.L., Ward, T.J., Dixon, D.W. Ecotoxicol. Environ. Saf. (2002) [Pubmed]
  9. Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. Ma, J., Lu, N., Qin, W., Xu, R., Wang, Y., Chen, X. Ecotoxicol. Environ. Saf. (2006) [Pubmed]
  10. Differential sensitivity of three cyanobacterial and five green algal species to organotins and pyrethroids pesticides. Ma, J. Sci. Total Environ. (2005) [Pubmed]
  11. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Megharaj, M., Kantachote, D., Singleton, I., Naidu, R. Environ. Pollut. (2000) [Pubmed]
  12. Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. DeLorenzo, M.E., Serrano, L. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. (2003) [Pubmed]
  13. Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Villand, P., Eriksson, M., Samuelsson, G. Biochem. J. (1997) [Pubmed]
  14. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Baroli, I., Niyogi, K.K. Philos. Trans. R. Soc. Lond., B, Biol. Sci. (2000) [Pubmed]
  15. Isolation, cloning, mapping, and nucleotide sequencing of the gene encoding flavodoxin in Escherichia coli. Osborne, C., Chen, L.M., Matthews, R.G. J. Bacteriol. (1991) [Pubmed]
  16. Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Gupta, V.K., Shrivastava, A.K., Jain, N. Water Res. (2001) [Pubmed]
  17. Genetic polymorphism in eight Chilean strains of the carotenogenic microalga Dunaliella salina Teodoresco (Chlorophyta). Gomez, P.I., Gonzalez, M.A. Biol. Res. (2001) [Pubmed]
  18. Acyl carrier protein-derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain N1. Hwang, S.R., Tabita, F.R. J. Biol. Chem. (1991) [Pubmed]
  19. Structural properties of the D1 and surrounding photosystem II polypeptides as revealed by their interaction with cross-linking reagents. Adir, N., Ohad, I. J. Biol. Chem. (1988) [Pubmed]
  20. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J.L., Bornens, M. J. Cell. Sci. (1996) [Pubmed]
  21. High-resolution electron microscopy of glycoproteins: the crystalline cell wall of Lobomonas. Roberts, K., Shaw, P.J., Hills, G.J. J. Cell. Sci. (1981) [Pubmed]
  22. Inducement of wound motility in intact giant algal cells. La Claire, J.W. Exp. Cell Res. (1983) [Pubmed]
  23. Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer. Hay, S., Wallace, B.B., Smith, T.A., Ghiggino, K.P., Wydrzynski, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. Cotranscription, deduced primary structure, and expression of the chloroplast-encoded rbcL and rbcS genes of the marine diatom Cylindrotheca sp. strain N1. Hwang, S.R., Tabita, F.R. J. Biol. Chem. (1991) [Pubmed]
  25. A two-component high-affinity nitrate uptake system in barley. Tong, Y., Zhou, J.J., Li, Z., Miller, A.J. Plant J. (2005) [Pubmed]
  26. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii. Chen, Q., Silflow, C.D. Plant Physiol. (1996) [Pubmed]
  27. Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Cannell, R.J., Farmer, P., Walker, J.M. Biochem. J. (1988) [Pubmed]
  28. Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. Geier, B.M., Wiech, H., Schiebel, E. J. Biol. Chem. (1996) [Pubmed]
  29. Group I introns interrupt the chloroplast psaB and psbC and the mitochondrial rrnL gene in Chlamydomonas. Turmel, M., Mercier, J.P., Côté, M.J. Nucleic Acids Res. (1993) [Pubmed]
  30. Ferredoxin and ribosomal protein S10 are encoded on the cyanelle genome of Cyanophora paradoxa. Bryant, D.A., Schluchter, W.M., Stirewalt, V.L. Gene (1991) [Pubmed]
  31. The chloroplast chlL gene of the green alga Chlorella vulgaris C-27 contains a self-splicing group I intron. Kapoor, M., Wakasugi, T., Yoshinaga, K., Sugiura, M. Mol. Gen. Genet. (1996) [Pubmed]
  32. Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (volvocales, chlorophyceae). Nozaki, H., Onishi, K., Morita, E. J. Mol. Evol. (2002) [Pubmed]
  33. Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants. Bhattacharya, D., Steinkötter, J., Melkonian, M. Plant Mol. Biol. (1993) [Pubmed]
WikiGenes - Universities