The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

MOLI001161     decanoic acid

Synonyms: AC1L9P29
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MOLI001161

  • Here we use molecular dynamics to test the flexibility of Escherichia coli RRF (ecRRF) with and without decanoic acid bound to a hydrophobic pocket between domains 1 and 2, and Thermus thermophilus RRF (ttRRF) with and without a mutation in the hinge between domains 1 and 2 [1].
  • Of 11 fatty acids and monoglycerides tested against Campylobacter jejuni, the 1-monoglyceride of capric acid (monocaprin) was the most active in killing the bacterium [2].
  • In this study, the medium-chain fatty acids (MCFA), caproic, caprylic, and capric acid, were evaluated for the control of Salmonella serovar Enteritidis in chickens [3].
  • All Moraxella species were distinguished by small amounts of decanoic acid (10:0) and the absence of i-17:0 [4].
  • Lactobacillus leichmanii growing in complex medium supplemented with decanoic acid accumulated high concentrations of hydrogen peroxide in the culture [5].
 

Psychiatry related information on MOLI001161

 

High impact information on MOLI001161

 

Chemical compound and disease context of MOLI001161

 

Biological context of MOLI001161

 

Anatomical context of MOLI001161

 

Associations of MOLI001161 with other chemical compounds

 

Gene context of MOLI001161

  • The S. enterica fadR strains grow more rapidly than the wild-type strains on decanoic acid and also grow well on octanoic and hexanoic acids (which do not support growth of wild-type strains) [11].
  • CONCLUSIONS: These findings suggest that not only OA but also CA stimulates IL-8 production in intestinal epithelial cells, and the mechanisms of action differ between OA and CA [27].
  • The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction [28].
  • Molecular Cloning of CYP76B9, a Cytochrome P450 from Petunia hybrida, Catalyzing the omega-Hydroxylation of Capric Acid and Lauric Acid [29].
  • RESULTS: The data of the particle size and size distribution of aqueous decanoic acid stabilized Fe3O4 magnetic fluids were acquired, and the influences of concentrations of butylcyanoacrylate (BCA) and Dextran-70 on the particle size and size distribution of PBCA magnetic nanoparticles were characterized [30].
 

Analytical, diagnostic and therapeutic context of MOLI001161

References

  1. Exploring the flexibility of ribosome recycling factor using molecular dynamics. Stagg, S.M., Harvey, S.C. Biophys. J. (2005) [Pubmed]
  2. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Thormar, H., Hilmarsson, H., Bergsson, G. Appl. Environ. Microbiol. (2006) [Pubmed]
  3. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J., Sevcik, M., Rychlik, I., Haesebrouck, F., Ducatelle, R. Appl. Environ. Microbiol. (2004) [Pubmed]
  4. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. Moss, C.W., Wallace, P.L., Hollis, D.G., Weaver, R.E. J. Clin. Microbiol. (1988) [Pubmed]
  5. Fatty acid dependent hydrogen peroxide production in Lactobacillus. Nuñez de Kairuz, M.S., Olazabal, M.E., Oliver, G., Pesce de Ruiz Holgado, A.A., Massa, E., Farías, R.N. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  6. Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. Gwynne, R.M., Thomas, E.A., Goh, S.M., Sjövall, H., Bornstein, J.C. J. Physiol. (Lond.) (2004) [Pubmed]
  7. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Ma, Q., Zhao, X., Eddine, A.N., Geerlof, A., Li, X., Cronan, J.E., Kaufmann, S.H., Wilmanns, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Interaction between enteroviruses and human endothelial cells in vitro. Alterations in the physical properties of endothelial cell plasma membrane and adhesion of human granulocytes. Kirkpatrick, C.J., Bültmann, B.D., Gruler, H. Am. J. Pathol. (1985) [Pubmed]
  9. A novel strategy for the enhancement of drug absorption using a claudin modulator. Kondoh, M., Masuyama, A., Takahashi, A., Asano, N., Mizuguchi, H., Koizumi, N., Fujii, M., Hayakawa, T., Horiguchi, Y., Watanbe, Y. Mol. Pharmacol. (2005) [Pubmed]
  10. Identification of capric acid as a potent vasorelaxant of human basilar arteries. White, R.P., Ricca, G.F., el-Bauomy, A.M., Robertson, J.T. Stroke (1991) [Pubmed]
  11. The beta-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent. Iram, S.H., Cronan, J.E. J. Bacteriol. (2006) [Pubmed]
  12. Hydrogels containing monocaprin prevent intravaginal and intracutaneous infections with HSV-2 in mice: impact on the search for vaginal microbicides. Neyts, J., Kristmundsdóttir, T., De Clercq, E., Thormar, H. J. Med. Virol. (2000) [Pubmed]
  13. Acyl-chain specificity and properties of cholesterol esterases from normal and Wolman lymphoid cell lines. Nègre, A., Salvayre, R., Rogalle, P., Dang, Q.Q., Douste-Blazy, L. Biochim. Biophys. Acta (1987) [Pubmed]
  14. Interaction of recombinant granulocyte colony stimulating factor with lipid membranes: enhanced stability of a water-soluble protein after membrane insertion. Collins, D., Cha, Y. Biochemistry (1994) [Pubmed]
  15. Lipase-catalyzed reactions at different surfaces. Reis, P., Holmberg, K., Debeche, T., Folmer, B., Fauconnot, L., Watzke, H. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  16. Alteration in membrane fluidity and lipid composition, and modulation of H(+)-ATPase activity in Saccharomyces cerevisiae caused by decanoic acid. Alexandre, H., Mathieu, B., Charpentier, C. Microbiology (Reading, Engl.) (1996) [Pubmed]
  17. Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions. Boddupalli, S.S., Pramanik, B.C., Slaughter, C.A., Estabrook, R.W., Peterson, J.A. Arch. Biochem. Biophys. (1992) [Pubmed]
  18. Metabolism of branched-chain keto acids in neonatal rat liver perfusions. Frost, S.C., Wells, M.A. Arch. Biochem. Biophys. (1983) [Pubmed]
  19. In vitro killing of Candida albicans by fatty acids and monoglycerides. Bergsson, G., Arnfinnsson, J., Steingrímsson O, n.u.l.l., Thormar, H. Antimicrob. Agents Chemother. (2001) [Pubmed]
  20. Inhibition of corneal inflammation by an acylated superoxide dismutase derivative. Ando, E., Ando, Y., Inoue, M., Morino, Y., Kamata, R., Okamura, R. Invest. Ophthalmol. Vis. Sci. (1990) [Pubmed]
  21. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. Lindmark, T., Kimura, Y., Artursson, P. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  22. Crystallization and preliminary diffraction studies of thioesterase II from rat mammary gland. Buchbinder, J.L., Witkowski, A., Smith, S., Fletterick, R.J. Proteins (1995) [Pubmed]
  23. Plasma fatty acids and [13C]linoleic acid metabolism in preterm infants fed a formula with medium-chain triglycerides. Rodriguez, M., Funke, S., Fink, M., Demmelmair, H., Turini, M., Crozier, G., Koletzko, B. J. Lipid Res. (2003) [Pubmed]
  24. Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. Sidhu, S.S., Thompson, D.G., Warhurst, G., Case, R.M., Benson, R.S. J. Physiol. (Lond.) (2000) [Pubmed]
  25. Preparation and evaluation of Eudragit gels. VIII. Rectal absorption of 5-fluorouracil from Eudispert hv gels in rats. Umejima, H., Kikuchi, A., Kim, N.S., Uchida, T., Goto, S. Journal of pharmaceutical sciences. (1995) [Pubmed]
  26. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Kelsey, J.A., Bayles, K.W., Shafii, B., McGuire, M.A. Lipids (2006) [Pubmed]
  27. Medium-chain fatty acids stimulate interleukin-8 production in Caco-2 cells with different mechanisms from long-chain fatty acids. Tanaka, S., Saitoh, O., Tabata, K., Matsuse, R., Kojima, K., Sugi, K., Nakagawa, K., Kayazawa, M., Teranishi, T., Uchida, K., Hirata, I., Katsu, K. J. Gastroenterol. Hepatol. (2001) [Pubmed]
  28. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids. Schütt, B.S., Brummel, M., Schuch, R., Spener, F. Planta (1998) [Pubmed]
  29. Molecular Cloning of CYP76B9, a Cytochrome P450 from Petunia hybrida, Catalyzing the omega-Hydroxylation of Capric Acid and Lauric Acid. Imaishi, H., Petkova-Andonova, M. Biosci. Biotechnol. Biochem. (2007) [Pubmed]
  30. Preparation and characterization of polybutylcyanoacrylate magnetic nanoparticles. Ren, F., Chen, J.H., Jiang, Y.D., Chen, Z.L. Di Yi Jun Yi Da Xue Xue Bao (2004) [Pubmed]
  31. Characterisation of membrane mimetics on a dual polarisation interferometer. Terry, C.J., Popplewell, J.F., Swann, M.J., Freeman, N.J., Fernig, D.G. Biosensors & bioelectronics. (2006) [Pubmed]
  32. Esterification of decanoic acid during supercritical fluid extraction employing either methanol-modified carbon dioxide or a methanol trap. McDaniel, L.H., Taylor, L.T. Journal of chromatography. A. (1999) [Pubmed]
  33. Encapsulation and retention of decanoic acid in sol-gel-made silicas. Veith, S.R., Perren, M., Pratsinis, S.E. Journal of colloid and interface science. (2005) [Pubmed]
 
WikiGenes - Universities