The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1NFJIQ     2-cyano-3-(3,4-dihydroxy-5- nitro-phenyl)-N...

Synonyms: SureCN34505, AG-A-41658, ACMC-20mm79, CTK0G0511, CTK8E7938, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Comtan


Psychiatry related information on Comtan


High impact information on Comtan


Chemical compound and disease context of Comtan


Biological context of Comtan


Anatomical context of Comtan


Associations of Comtan with other chemical compounds

  • This paper reviews the issue of hepatotoxicity with the use of the catechol-O-methly transferase (COMT) inhibitors tolcapone and entacapone [24].
  • In contrast, l-DOPA or the dopamine-metabolizing enzyme inhibitor entacapone suppressed low-salt-induced cortical COX-2 expression [25].
  • Our models propose that increasing steric volume of e.g. the diethylamine tail of entacapone is favourable for COMT inhibitory activity [26].
  • The FDOPA accumulation, expressed as striatal-to-occipital ratios and modified decarboxylation coefficients (k3R0), increased significantly after entacapone + selegiline administration in all subject populations [27].
  • METHODS: In a randomized, double-blind, two-way cross-over study, 12 healthy subjects (gender ratio 1 : 1) received treatment for 1 week with either entacapone 200 mg four times daily or placebo during individually optimized treatment with warfarin (INR 1.4-1.8) [14].

Gene context of Comtan

  • The COMT inhibitors entacapone and tolcapone are rapidly metabolized in vivo, mainly by glucuronidation [28].
  • However, UGT1A1 was the only UGT capable of catalyzing the formation of two glucuronides of the catecholic entacapone [28].
  • Neither entacapone nor tolcapone was glucuronidated by UGT1A6 [28].
  • The kinetic data illustrates that UGT1A9 exhibited a much greater rate of glucuronidation and a far lower K(m) value for both entacapone and tolcapone than UGT2B15 and UGT2B7 whose contribution is minor by comparison [28].
  • In 2 well conducted trials of 6 months' duration and smaller short term studies, treatment with entacapone (200 mg with each dose of levodopa/AADC inhibitor) was associated with significant increases in daily 'on' time and decreases in 'off' time [2].

Analytical, diagnostic and therapeutic context of Comtan


  1. Entacapone and motor fluctuations in Parkinson's disease. Riggs, J.E. Ann. Neurol. (1998) [Pubmed]
  2. Entacapone. A review of its use in Parkinson's disease. Holm, K.J., Spencer, C.M. Drugs (1999) [Pubmed]
  3. Entacapone protects from angiotensin II-induced inflammation and renal injury. Helkamaa, T., Finckenberg, P., Louhelainen, M., Merasto, S., Rauhala, P., Lapatto, R., Cheng, Z.J., Reenilä, I., Männistö, P., Müller, D.N., Luft, F.C., Mervaala, E.M. J. Hypertens. (2003) [Pubmed]
  4. The catechol-O-methyltransferase (COMT) inhibitor entacapone enhances the pharmacokinetic and clinical response to Sinemet CR in Parkinson's disease. Piccini, P., Brooks, D.J., Korpela, K., Pavese, N., Karlsson, M., Gordin, A. J. Neurol. Neurosurg. Psychiatr. (2000) [Pubmed]
  5. In vitro metabolism of tolcapone to reactive intermediates: relevance to tolcapone liver toxicity. Smith, K.S., Smith, P.L., Heady, T.N., Trugman, J.M., Harman, W.D., Macdonald, T.L. Chem. Res. Toxicol. (2003) [Pubmed]
  6. Effect of pulsatile administration of levodopa on dyskinesia induction in drug-naïve MPTP-treated common marmosets: effect of dose, frequency of administration, and brain exposure. Smith, L.A., Jackson, M.J., Hansard, M.J., Maratos, E., Jenner, P. Mov. Disord. (2003) [Pubmed]
  7. Entacapone in restless legs syndrome. Sharif, A.A. Mov. Disord. (2002) [Pubmed]
  8. Beneficial effects of co-administration of catechol-O-methyltransferase inhibitors and L-dihydroxyphenylalanine in rat models of depression. Männistö, P.T., Lang, A., Rauhala, P., Vasar, E. Eur. J. Pharmacol. (1995) [Pubmed]
  9. Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). UGT1A9 is more resistant to detergent inhibition than other UGTs and was purified as an active dimeric enzyme. Kurkela, M., García-Horsman, J.A., Luukkanen, L., Mörsky, S., Taskinen, J., Baumann, M., Kostiainen, R., Hirvonen, J., Finel, M. J. Biol. Chem. (2003) [Pubmed]
  10. COMT genotype and effectiveness of entacapone in patients with fluctuating Parkinson's disease. Lee, M.S., Kim, H.S., Cho, E.K., Lim, J.H., Rinne, J.O. Neurology (2002) [Pubmed]
  11. Population pharmacodynamic modeling of levodopa in patients with Parkinson's disease receiving entacapone. Trocóniz, I.F., Naukkarinen, T.H., Ruottinen, H.M., Rinne, U.K., Gordin, A., Karlsson, M.O. Clin. Pharmacol. Ther. (1998) [Pubmed]
  12. Simultaneous inhibition of catechol-O-methyltransferase and monoamine oxidase A: effects on hemodynamics and catecholamine metabolism in healthy volunteers. Illi, A., Sundberg, S., Ojala-Karlsson, P., Scheinin, M., Gordin, A. Clin. Pharmacol. Ther. (1996) [Pubmed]
  13. Entacapone enhances levodopa-induced reversal of motor disability in MPTP-treated common marmosets. Smith, L.A., Gordin, A., Jenner, P., Marsden, C.D. Mov. Disord. (1997) [Pubmed]
  14. Effect of the catechol-O-methyltransferase inhibitor entacapone on the steady-state pharmacokinetics and pharmacodynamics of warfarin. Dingemanse, J., Meyerhoff, C., Schadrack, J. British journal of clinical pharmacology. (2002) [Pubmed]
  15. The effects of different repeated doses of entacapone on the pharmacokinetics of L-Dopa and on the clinical response to L-Dopa in Parkinson's disease. Heikkinen, H., Nutt, J.G., LeWitt, P.A., Koller, W.C., Gordin, A. Clinical neuropharmacology. (2001) [Pubmed]
  16. Pharmacokinetic behaviour of levodopa and 3-O-methyldopa after repeat administration of levodopa/carbidopa with and without entacapone in patients with Parkinson's disease. Müller, T., Erdmann, C., Muhlack, S., Bremen, D., Przuntek, H., Goetze, O., Woitalla, D. Journal of neural transmission (Vienna, Austria : 1996) (2006) [Pubmed]
  17. Effect of entacapone, a COMT inhibitor, on clinical disability and levodopa metabolism in parkinsonian patients. Kaakkola, S., Teräväinen, H., Ahtila, S., Rita, H., Gordin, A. Neurology (1994) [Pubmed]
  18. The effect of entacapone on the disposition and hemodynamic effects of intravenous isoproterenol and epinephrine. Illi, A., Sundberg, S., Ojala-Karlsson, P., Korhonen, P., Scheinin, M., Gordin, A. Clin. Pharmacol. Ther. (1995) [Pubmed]
  19. The effect of entacapone (OR-611) on brain [18F]-6-L-fluorodopa metabolism: implications for levodopa therapy of Parkinson's disease. Sawle, G.V., Burn, D.J., Morrish, P.K., Lammertsma, A.A., Snow, B.J., Luthra, S., Osman, S., Brooks, D.J. Neurology (1994) [Pubmed]
  20. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melén, K., Julkunen, I., Taskinen, J. Biochemistry (1995) [Pubmed]
  21. The effect of carbidopa and entacapone pretreatment on the L-dopa pharmacokinetics and metabolism in blood plasma and skeletal muscle in beagle dog: an in vivo microdialysis study. Deleu, D., Sarre, S., Ebinger, G., Michotte, Y. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  22. Identification of major metabolites of the catechol-O-methyltransferase inhibitor entacapone in rats and humans. Wikberg, T., Vuorela, A., Ottoila, P., Taskinen, J. Drug Metab. Dispos. (1993) [Pubmed]
  23. Entacapone, a novel catechol-O-methyltransferase inhibitor for Parkinson's disease, does not impair mitochondrial energy production. Nissinen, E., Kaheinen, P., Penttilä, K.E., Kaivola, J., Lindén, I.B. Eur. J. Pharmacol. (1997) [Pubmed]
  24. COMT inhibitors and liver toxicity. Watkins, P. Neurology (2000) [Pubmed]
  25. Cross talk between the intrarenal dopaminergic and cyclooxygenase-2 systems. Zhang, M.Z., Yao, B., McKanna, J.A., Harris, R.C. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  26. A structure-activity relationship study of catechol-O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods. Tervo, A.J., Nyrönen, T.H., Rönkkö, T., Poso, A. J. Comput. Aided Mol. Des. (2003) [Pubmed]
  27. Striatal 6-[18F]fluorodopa accumulation after combined inhibition of peripheral catechol-O-methyltransferase and monoamine oxidase type B: differing response in relation to presynaptic dopaminergic dysfunction. Ruottinen, H.M., Rinne, J.O., Oikonen, V.J., Bergman, J.R., Haaparanta, M.T., Solin, O.H., Ruotsalainen, U.H., Rinne, U.K. Synapse (1997) [Pubmed]
  28. The specificity of glucuronidation of entacapone and tolcapone by recombinant human UDP-glucuronosyltransferases. Lautala, P., Ethell, B.T., Taskinen, J., Burchell, B. Drug Metab. Dispos. (2000) [Pubmed]
  29. Double-blind, placebo-controlled study of entacapone in levodopa-treated patients with stable Parkinson disease. Olanow, C.W., Kieburtz, K., Stern, M., Watts, R., Langston, J.W., Guarnieri, M., Hubble, J. Arch. Neurol. (2004) [Pubmed]
  30. L-dopa induces dyskinesia in normal monkeys: behavioural and pharmacokinetic observations. Pearce, R.K., Heikkilä, M., Lindén, I.B., Jenner, P. Psychopharmacology (Berl.) (2001) [Pubmed]
WikiGenes - Universities