The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CINANSERIN     (E)-N-[2-(3- dimethylaminopropylsulfanyl) ph...

Synonyms: Cinaserin, Cinanserina, Cinanserine, Cinanserinum, CHEMBL18786, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CINANSERIN


Psychiatry related information on CINANSERIN


High impact information on CINANSERIN

  • Specific 125I-SCH 23982 binding was displaced by the selective D1 antagonists SCH 23390 (IC50 = 90 pM) and cis-flupenthixol (IC50 = 200 pM) and the D1 agonist SKF 38393 (IC50 = 110 nM) but not by D2-selective ligands (I-sulpiride, LY 171555) or the S2 antagonist cinanserin [5].
  • The specific binding (defined by the difference in 3H-DOB binding in the presence and absence of 10(-6) M cinanserin, a potent and specific 5-HT2 antagonist) displayed high affinity (KD = 4.1 X 10(-10) M) and saturability with a Bmax of 17.9 fmol/mg of protein [6].
  • 5-Hydroxytryptamine changes the shape of rat blood platelets by combination with a cinanserin-sensitive receptor which is not associated with the active uptake of 5-hydroxytryptamine [7].
  • The 5-HT reuptake inhibitor fluoxetine enhanced the occurrence and severity of convulsions produced by 100 mg/kg (-) cocaine, while the 5-HT2 receptor antagonists cinanserin, ketanserin and pirenperone antagonized cocaine-induced convulsions in a dose-dependent manner [8].
  • In contrast, the PBG excitations were unaffected by the 5-HT2 receptor antagonist, cinanserin (2/2), and the selective 5-HT1A receptor antagonist, WAY- 100802 (6/6) [9].

Chemical compound and disease context of CINANSERIN

  • Antagonists of 5-HT (methergoline, methysergide and cinanserin) did not potentiate the myoclonus induced by p,p'-DDT [10].
  • Pirenperone at 0.32 and 1.0 mg/kg, cinanserin 10 mg/kg and ritanserin 3.2 mg/kg administered i.p. immediately after blood flow reperfusion significantly reduced the increase in errors expected to occur 24 h after the 5 min of ischemia [11].
  • However, pretreatment with either methysergide or cinanserin not only failed to inhibit tryptamine's potentiation of nociception, but actually enhanced the hyperalgesia produced by tryptamine [12].
  • When 2.5 mg/kg cinanserin, a drug that antagonizes postsynaptic serotonergic receptors, was coadministered with a higher (95 mg/kg) dose of cocaine, the time of onset of status epilepticus was significantly increased, whereas lethality was reduced [13].

Biological context of CINANSERIN


Anatomical context of CINANSERIN


Associations of CINANSERIN with other chemical compounds

  • The 5-HT2 antagonists cyproheptadine, cinanserin, ritanserin, and ketanserin increased the rate of tactile startle habituation without affecting initial levels of reactivity [22].
  • In membrane preparations of superior colliculus of the rat, the binding of [3H]spiperone (0.15 nM) was displaced by the incorporation of (+)-butaclamol, haloperidol, apomorphine and (+/-)-sulpiride, but not by (-)-butaclamol, prazosin, propranolol, ketanserin or cinanserin [23].
  • These observations suggest cyproheptadine, pizotyline, methysergide, lysergic acid diethylamide, mianserin and cinanserin are agonists at the 5-HT1 receptor in the l-5-HTP discrimination and antagonists at a 5-HT2 receptor in the quipazine discrimination in pigeons [24].
  • Co-incubation with increasing concentrations of several well-known 5-HT2-selective drugs, such as pirenperone, cinanserin and ketanserin, resulted in an inhibition of the binding of the four 3H-labeled ligands to the same areas [25].
  • The response to BNP was reduced by 88% in chloride free Kreb's buffer, by 83% in tissues pretreated with cinanserin, an antagonist of the 5-HT2 subtype of the 5-hydroxytryptamine receptor, and by 96% in tissues pretreated with tetrodotoxin, a blocker of axonal conduction [26].

Gene context of CINANSERIN

  • Classical 5-HT antagonists (methysergide, metergoline, cinanserin and methiothepin) were either without effect or facilitated the response and the 5-HT2 antagonist, ritanserin was also without effect [27].
  • Selective 5-HT2 receptor antagonists devoid of alpha 1-adrenoceptor blocking properties, e.g. LY 53857 and cinanserin, fail to reduce blood pressure and sympathetic nerve activity [28].
  • The DOM-induced desensitization of the 5-HT2 receptor coupled response was fully blocked by 0.1 microM cinanserin [29].

Analytical, diagnostic and therapeutic context of CINANSERIN


  1. Experimental CNS ischemia: serotonin antagonists reduce or prevent damage. Zivin, J.A., Venditto, J.A. Neurology (1984) [Pubmed]
  2. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. Chen, L., Gui, C., Luo, X., Yang, Q., Günther, S., Scandella, E., Drosten, C., Bai, D., He, X., Ludewig, B., Chen, J., Luo, H., Yang, Y., Yang, Y., Zou, J., Thiel, V., Chen, K., Shen, J., Shen, X., Jiang, H. J. Virol. (2005) [Pubmed]
  3. Antimyoclonic properties of S2 serotonin receptor antagonists in the rat. Pranzatelli, M.R., Snodgrass, S.R. Neuropharmacology (1986) [Pubmed]
  4. Effects of serotonergic agonists and antagonists on the locomotor activity of neonatal rats. Lucot, J.B., Seiden, L.S. Pharmacol. Biochem. Behav. (1986) [Pubmed]
  5. Picomolar affinity of 125I-SCH 23982 for D1 receptors in brain demonstrated with digital subtraction autoradiography. Altar, C.A., Marien, M.R. J. Neurosci. (1987) [Pubmed]
  6. 3H-DOB (4-bromo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors. Lyon, R.A., Davis, K.H., Titeler, M. Mol. Pharmacol. (1987) [Pubmed]
  7. Specific binding sites for 5-hydroxytryptamine on rat blood platelets. Drummond, A.H., Gordon, J.L. Biochem. J. (1975) [Pubmed]
  8. Cocaine-induced convulsions: pharmacological antagonism at serotonergic, muscarinic and sigma receptors. Ritz, M.C., George, F.R. Psychopharmacology (Berl.) (1997) [Pubmed]
  9. Mediation by 5-HT3 receptors of an excitatory effect of 5-HT on dorsal vagal preganglionic neurones in anaesthetized rats: an ionophoretic study. Wang, Y., Ramage, A.G., Jordan, D. Br. J. Pharmacol. (1996) [Pubmed]
  10. Myoclonus in the rat induced by p,p'-DDT and the role of altered monoamine function. Pratt, J.A., Rothwell, J., Jenner, P., Marsden, C.D. Neuropharmacology (1985) [Pubmed]
  11. Blockade of 5-HT2 receptors protects against impairment of working memory following transient forebrain ischemia in the rat. Ohno, M., Yamamoto, T., Watanabe, S. Neurosci. Lett. (1991) [Pubmed]
  12. Hyperalgesia produced by the intrathecal administration of tryptamine to rats. Larson, A.A. Brain Res. (1983) [Pubmed]
  13. Serotonergic mediation of cocaine seizures in mice. Schechter, M.D., Meehan, S.M. Pharmacol. Biochem. Behav. (1995) [Pubmed]
  14. Selective labelling of high affinity 5-hydroxytryptamine1 receptors in whole rat brain. Yoshikawa, S., Ishitani, R. Neuropharmacology (1984) [Pubmed]
  15. The hypophagic effect of restraint stress in rats can be mediated by 5-HT2 receptors in the paraventricular nucleus of the hypothalamus. Grignaschi, G., Mantelli, B., Samanin, R. Neurosci. Lett. (1993) [Pubmed]
  16. Some pharmacological actions of 2,5-dimethoxy-4-ethylamphetamine (DOET) in rats and mice. Huang, J., Ho, B.T. J. Pharm. Pharmacol. (1975) [Pubmed]
  17. Protective effect of the serotonin receptor antagonist cinanserin in two canine models of pacing-induced myocardial ischemia. Grover, G.J., Parham, C.S., Youssef, S., Ogletree, M.L. Pharmacology (1995) [Pubmed]
  18. p-Chloroamphetamine-induced hyperthermia pharmacologically distinct from fenfluramine-induced hyperthermia. Quock, R.M., Weick, B.G. J. Pharm. Pharmacol. (1979) [Pubmed]
  19. Studies on the mesolimbic loop of antinociception--II. A serotonin-enkephalin interaction in the nucleus accumbens. Xuan, Y.T., Shi, Y.S., Zhou, Z.F., Han, J.S. Neuroscience (1986) [Pubmed]
  20. Inhibition of phrenic and sympathetic vasomotor neurons in cats by the serotonin analog 5-methoxy-N,N-dimethyltryptamine. Lalley, P.M. J. Pharmacol. Exp. Ther. (1982) [Pubmed]
  21. Proceedings: The effects of cinanserin and phentolamine applied by microiontophoresis in the spinal cord. Barasi, S., Roberts, M.H. Br. J. Pharmacol. (1975) [Pubmed]
  22. Habituation of tactile startle is altered by drugs acting on serotonin-2 receptors. Geyer, M.A., Tapson, G.S. Neuropsychopharmacology (1988) [Pubmed]
  23. In vitro characterisation of dopamine receptors in the superior colliculus of the rat. Weller, M.E., Rose, S., Jenner, P., Marsden, C.D. Neuropharmacology (1987) [Pubmed]
  24. Agonist and antagonist properties of serotonergic compounds in pigeons trained to discriminate either quipazine or L-5-hydroxytryptophan. Yamamoto, T., Walker, E.A., Woods, J.H. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  25. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Pazos, A., Cortés, R., Palacios, J.M. Brain Res. (1985) [Pubmed]
  26. Distribution and function of brain natriuretic peptide in the stomach and small intestine of the rat. Sharkey, K.A., Gall, D.G., MacNaughton, W.K. Regul. Pept. (1991) [Pubmed]
  27. The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Goodwin, G.M., De Souza, R.J., Green, A.R. Neuropharmacology (1985) [Pubmed]
  28. Central 5-hydroxytryptamine (5-HT) receptors in blood pressure regulation. Dabiré, H. Thérapie. (1991) [Pubmed]
  29. Rapid desensitization and resensitization of 5-HT2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells. Pauwels, P.J., Van Gompel, P., Leysen, J.E. Life Sci. (1990) [Pubmed]
  30. Delayed functional disability in dystrophic chickens receiving chemotherapy. Hudecki, M.S., Pollina, C.M., Bhargava, A.K., Hudecki, R.S., Heffner, R.R. Muscle Nerve (1979) [Pubmed]
  31. Is there a serotonergic tonic descending inhibition on the responses of dorsal horn convergent neurons to C-fibre inputs? Rivot, J.P., Calvino, B., Besson, J.M. Brain Res. (1987) [Pubmed]
  32. The effect of modification of 5-hydroxytryptamine function in nucleus raphe magnus on nociceptive threshold. Llewelyn, M.B., Azami, J., Roberts, M.H. Brain Res. (1984) [Pubmed]
  33. The excitability and rhythm of medullary respiratory neurons in the cat are altered by the serotonin receptor agonist 5-methoxy-N,N, dimethyltryptamine. Lalley, P.M. Brain Res. (1994) [Pubmed]
WikiGenes - Universities