The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SREBF1  -  sterol regulatory element binding...

Homo sapiens

Synonyms: BHLHD1, Class D basic helix-loop-helix protein 1, SREBP-1, SREBP-1c, SREBP1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SREBF1

 

Psychiatry related information on SREBF1

 

High impact information on SREBF1

 

Chemical compound and disease context of SREBF1

 

Biological context of SREBF1

 

Anatomical context of SREBF1

 

Associations of SREBF1 with chemical compounds

 

Physical interactions of SREBF1

 

Enzymatic interactions of SREBF1

 

Regulatory relationships of SREBF1

 

Other interactions of SREBF1

  • Nuclear SREBPs interacted with the SUMO-1-conjugating enzyme Ubc9, and overexpression of a dominant negative form of Ubc9 increased the mRNA levels of SREBP-responsive genes [40].
  • We now demonstrate that SREBP-2 is the predominant SREBP in human keratinocytes and murine epidermis, while SREBP-1 is not detected [41].
  • In CaCo-2 cells, polyunsaturated fatty acids decrease gene and protein expression of SREBP-1 and FAS mRNA, probably through interference with LXR activity [24].
  • Overexpression of SUMO-1 reduced whereas its dominant negative form increased mRNA levels of SREBP-responsive genes [40].
  • In summary, our studies demonstrate a role for sphingolipid metabolism and SREBP1 in ACTH-dependent CYP17 regulation and steroidogenesis [26].
 

Analytical, diagnostic and therapeutic context of SREBF1

References

  1. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Yang, Y.A., Morin, P.J., Han, W.F., Chen, T., Bornman, D.M., Gabrielson, E.W., Pizer, E.S. Exp. Cell Res. (2003) [Pubmed]
  2. Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. Fern??, J., Skrede, S., Vik-Mo, A.O., H??vik, B., Steen, V.M. BMC neuroscience (2006) [Pubmed]
  3. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia. Li, J.N., Mahmoud, M.A., Han, W.F., Ripple, M., Pizer, E.S. Exp. Cell Res. (2000) [Pubmed]
  4. Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha. Sewter, C., Berger, D., Considine, R.V., Medina, G., Rochford, J., Ciaraldi, T., Henry, R., Dohm, L., Flier, J.S., O'Rahilly, S., Vidal-Puig, A.J. Diabetes (2002) [Pubmed]
  5. SREBF-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Eberlé, D., Clément, K., Meyre, D., Sahbatou, M., Vaxillaire, M., Le Gall, A., Ferré, P., Basdevant, A., Froguel, P., Foufelle, F. Diabetes (2004) [Pubmed]
  6. Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis. McPherson, S., Jonsson, J.R., Barrie, H.D., O'Rourke, P., Clouston, A.D., Powell, E.E. J. Hepatol. (2008) [Pubmed]
  7. Down-regulation of SREBP-1c is associated with the development of burned-out NASH. Nagaya, T., Tanaka, N., Suzuki, T., Sano, K., Horiuchi, A., Komatsu, M., Nakajima, T., Nishizawa, T., Joshita, S., Umemura, T., Ichijo, T., Matsumoto, A., Yoshizawa, K., Nakayama, J., Tanaka, E., Aoyama, T. J. Hepatol. (2010) [Pubmed]
  8. Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus. Rawson, R.B. Essays Biochem. (2002) [Pubmed]
  9. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J.L., Brown, M.S. Cell (2002) [Pubmed]
  10. Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. DeBose-Boyd, R.A., Brown, M.S., Li, W.P., Nohturfft, A., Goldstein, J.L., Espenshade, P.J. Cell (1999) [Pubmed]
  11. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Brown, M.S., Goldstein, J.L. Cell (1997) [Pubmed]
  12. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Hua, X., Nohturfft, A., Goldstein, J.L., Brown, M.S. Cell (1996) [Pubmed]
  13. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Wang, X., Sato, R., Brown, M.S., Hua, X., Goldstein, J.L. Cell (1994) [Pubmed]
  14. Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway. Heemers, H., Maes, B., Foufelle, F., Heyns, W., Verhoeven, G., Swinnen, J.V. Mol. Endocrinol. (2001) [Pubmed]
  15. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Diraison, F., Dusserre, E., Vidal, H., Sothier, M., Beylot, M. Am. J. Physiol. Endocrinol. Metab. (2002) [Pubmed]
  16. Gender-related difference in altered gene expression of a sterol regulatory element binding protein, SREBP-2, by lead nitrate in rats: Correlation with development of hypercholesterolemia. Kojima, M., Degawa, M. Journal of applied toxicology : JAT. (2006) [Pubmed]
  17. SCAP ligands are potent new lipid-lowering drugs. Grand-Perret, T., Bouillot, A., Perrot, A., Commans, S., Walker, M., Issandou, M. Nat. Med. (2001) [Pubmed]
  18. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Hua, X., Wu, J., Goldstein, J.L., Brown, M.S., Hobbs, H.H. Genomics (1995) [Pubmed]
  19. Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Miserez, A.R., Cao, G., Probst, L.C., Hobbs, H.H. Genomics (1997) [Pubmed]
  20. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Fajas, L., Schoonjans, K., Gelman, L., Kim, J.B., Najib, J., Martin, G., Fruchart, J.C., Briggs, M., Spiegelman, B.M., Auwerx, J. Mol. Cell. Biol. (1999) [Pubmed]
  21. Spatial distribution and function of sterol regulatory element-binding protein 1a and 2 homo- and heterodimers by in vivo two-photon imaging and spectroscopy fluorescence resonance energy transfer. Zoumi, A., Datta, S., Liaw, L.H., Wu, C.J., Manthripragada, G., Osborne, T.F., Lamorte, V.J. Mol. Cell. Biol. (2005) [Pubmed]
  22. Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription. Llorente-Cortés, V., Costales, P., Bernués, J., Camino-Lopez, S., Badimon, L. J. Mol. Biol. (2006) [Pubmed]
  23. Insulin and human chorionic gonadotropin cause a shift in the balance of sterol regulatory element-binding protein (SREBP) isoforms toward the SREBP-1c isoform in cultures of human granulosa cells. Richardson, M.C., Cameron, I.T., Simonis, C.D., Das, M.C., Hodge, T.E., Zhang, J., Byrne, C.D. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  24. Polyunsaturated fatty acids decrease the expression of sterol regulatory element-binding protein-1 in CaCo-2 cells: effect on fatty acid synthesis and triacylglycerol transport. Field, F.J., Born, E., Murthy, S., Mathur, S.N. Biochem. J. (2002) [Pubmed]
  25. Regulation of fatty acid synthesis by farnesyl pyrophosphate. Murthy, S., Tong, H., Hohl, R.J. J. Biol. Chem. (2005) [Pubmed]
  26. Cyclic adenosine 5'-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1. Ozbay, T., Rowan, A., Leon, A., Patel, P., Sewer, M.B. Endocrinology (2006) [Pubmed]
  27. Sterol regulatory element binding protein 1 interacts with pregnane X receptor and constitutive androstane receptor and represses their target genes. Roth, A., Looser, R., Kaufmann, M., Meyer, U.A. Pharmacogenet. Genomics (2008) [Pubmed]
  28. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. Park, C.Y., Jun, H.J., Wakita, T., Cheong, J.H., Hwang, S.B. J. Biol. Chem. (2009) [Pubmed]
  29. A phosphorylation cascade controls the degradation of active SREBP1. Bengoechea-Alonso, M.T., Ericsson, J. J. Biol. Chem. (2009) [Pubmed]
  30. Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Yang, Y.A., Han, W.F., Morin, P.J., Chrest, F.J., Pizer, E.S. Exp. Cell Res. (2002) [Pubmed]
  31. Sterol regulatory element-binding protein-1 mediates the effect of insulin on hexokinase II gene expression in human muscle cells. Gosmain, Y., Lefai, E., Ryser, S., Roques, M., Vidal, H. Diabetes (2004) [Pubmed]
  32. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Cardinaux, J.R., Notis, J.C., Zhang, Q., Vo, N., Craig, J.C., Fass, D.M., Brennan, R.G., Goodman, R.H. Mol. Cell. Biol. (2000) [Pubmed]
  33. Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Rawson, R.B. Biochem. Soc. Symp. (2003) [Pubmed]
  34. A role for smooth endoplasmic reticulum membrane cholesterol ester in determining the intracellular location and regulation of sterol-regulatory-element-binding protein-2. Iddon, C.R., Wilkinson, J., Bennett, A.J., Bennett, J., Salter, A.M., Higgins, J.A. Biochem. J. (2001) [Pubmed]
  35. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. Roth, G., Kotzka, J., Kremer, L., Lehr, S., Lohaus, C., Meyer, H.E., Krone, W., Müller-Wieland, D. J. Biol. Chem. (2000) [Pubmed]
  36. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling. Weng, M.S., Ho, C.T., Ho, Y.S., Lin, J.K. Toxicol. Appl. Pharmacol. (2007) [Pubmed]
  37. KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells. Chang, Y., Wang, J., Lu, X., Thewke, D.P., Mason, R.J. J. Lipid Res. (2005) [Pubmed]
  38. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. Lee, J.N., Ye, J. J. Biol. Chem. (2004) [Pubmed]
  39. Purification of an interleukin-1 beta converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. Wang, X., Pai, J.T., Wiedenfeld, E.A., Medina, J.C., Slaughter, C.A., Goldstein, J.L., Brown, M.S. J. Biol. Chem. (1995) [Pubmed]
  40. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. Hirano, Y., Murata, S., Tanaka, K., Shimizu, M., Sato, R. J. Biol. Chem. (2003) [Pubmed]
  41. Parallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis but not ceramide synthesis in cultured human keratinocytes and murine epidermis. Harris, I.R., Farrell, A.M., Holleran, W.M., Jackson, S., Grunfeld, C., Elias, P.M., Feingold, K.R. J. Lipid Res. (1998) [Pubmed]
  42. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. Xu, J., Nakamura, M.T., Cho, H.P., Clarke, S.D. J. Biol. Chem. (1999) [Pubmed]
  43. Modulation of ERG25 expression by LDL in vascular cells. Rodriguez, C., Raposo, B., Martínez-González, J., Llorente-Cortés, V., Vilahur, G., Badimon, L. Cardiovasc. Res. (2003) [Pubmed]
  44. Lack of correlation between SREBF1 genotype and hyperlipidemia in individuals treated with highly active antiretroviral therapy. Yang, A., King, M.S., Han, L., Isaacson, J.D., Mueller, T., Grimm, D.R., Scott, C.B., Katz, D.A. AIDS (2003) [Pubmed]
 
WikiGenes - Universities