The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN186718     1H-indol-2-ol

Synonyms: AG-E-19230, ANW-72331, SureCN10788658, AK-42153, LS-83484, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Oxindol

 

High impact information on Oxindol

  • Cocrystallographic studies of SU6668 in the catalytic domain of FGF receptor 1 substantiated the adenine mimetic properties of its oxindole core [5].
  • The antiangiogenic drugs included (Z)-3-[4-(dimethylamino)benzylidenyl]indolin-2-one (a platelet-derived growth factor receptor beta and a fibroblast growth factor receptor 1 kinase inhibitor) and oxindole (a vascular endothelial growth factor receptor 2 kinase inhibitor) [6].
  • The 3-substituted 2-oxindole tenidap has proven anti-inflammatory actions both in vivo and in vitro, among which is the inhibition of TNF and IL-1 production by monocytes following activation by LPS [7].
  • The synthesis revolves around the Li[Me(3)AlSPh]-promoted isomerization of iminobenzoxazine 33 to quinazolinone 34, an N-acyliminium ion cyclization that converts enamide 9 to bridged indole 35, and rearrangement of 35 to oxindole ent-6 [8].
  • We show the oxindole inhibitor GW297361 elicits a Pho85-selective response in cells despite having a 20-fold greater biochemical potency for Cdk1 in vitro [9].
 

Chemical compound and disease context of Oxindol

 

Biological context of Oxindol

  • We previously described the inhibitory activity of the 2-indolinone derivative RPI-1 (formerly Cpdl) on the tyrosine kinase activity and transforming ability of the products of the RET/PTC1 oncogene exogenously expressed in murine cells [12].
  • 4. Oxindole (0.3-3 mM) increased the threshold and the latency of firing action potentials elicited by depolarizing steps without changing the duration or the peak amplitude of the spikes [13].
  • Reduction of the nitro group followed by intramolecular amination with ketone and aldehyde and amidation with ester produced indoline and oxindole derivatives, respectively, in excellent yield [14].
  • Hydroxylation in several positions on both the oxindole and thienyl rings of tenidap represents the major routes of metabolism; most of these metabolites are subsequently conjugated [15].
  • Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells [16].
 

Anatomical context of Oxindol

 

Associations of Oxindol with other chemical compounds

 

Gene context of Oxindol

  • Remarkable product preferences between the desaturation pathway to form the methyleneindolenine by CYP2F1 and the ring epoxidation pathway to form the oxindole by CYP1A2, were observed [24].
  • Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases [25].
  • We previously reported that novel oxindole derivatives have been identified as GHS-R agonists from our internal chemical library [26].
  • These results indicate that isorhynchophylline and isocorynoxeine preferentially suppress 5-HT2A receptor function in the brain probably via a competitive antagonism at 5-HT2A receptor sites and that the configuration of the oxindole moiety of isorhynchophylline is essential for their antagonistic activity at the 5-HT2A receptor [27].
  • METHODS: We investigated the cellular effects of RPI-1, a novel 2-indolinone Ret tyrosine kinase inhibitor on cells that express RET C634 oncogenic mutants common in the MEN2A syndrome: NIH3T3 fibroblasts transfected with RET(C634R) and human medullary thyroid carcinoma TT cells that express endogenous RET(C634W) [28].
 

Analytical, diagnostic and therapeutic context of Oxindol

References

  1. Oxindole in pathogenesis of hepatic encephalopathy. Moroni, F., Carpenedo, R., Venturini, I., Baraldi, M., Zeneroli, M.L. Lancet (1998) [Pubmed]
  2. Oxindole, a sedative tryptophan metabolite, accumulates in blood and brain of rats with acute hepatic failure. Carpenedo, R., Mannaioni, G., Moroni, F. J. Neurochem. (1998) [Pubmed]
  3. Bacterial chemistry. VI. Biological activities and cytotoxicity of 1,3-dihydro-2H-indol-2-one derivatives. Haun, M., Pereira, M.F., Hoffmann, M.E., Joyas, A., Campos, V., Filardi, L.D., de Castro, S.L., Duran, N. Biol. Res. (1992) [Pubmed]
  4. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Jiang, T., Kuhen, K.L., Wolff, K., Yin, H., Bieza, K., Caldwell, J., Bursulaya, B., Wu, T.Y., He, Y. Bioorg. Med. Chem. Lett. (2006) [Pubmed]
  5. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Laird, A.D., Vajkoczy, P., Shawver, L.K., Thurnher, A., Liang, C., Mohammadi, M., Schlessinger, J., Ullrich, A., Hubbard, S.R., Blake, R.A., Fong, T.A., Strawn, L.M., Sun, L., Tang, C., Hawtin, R., Tang, F., Shenoy, N., Hirth, K.P., McMahon, G., Cherrington, n.u.l.l. Cancer Res. (2000) [Pubmed]
  6. Antiangiogenic drugs synergize with a membrane macrophage colony-stimulating factor-based tumor vaccine to therapeutically treat rats with an established malignant intracranial glioma. Jeffes, E.W., Zhang, J.G., Hoa, N., Petkar, A., Delgado, C., Chong, S., Obenaus, A., Sanchez, R., Khalaghizadeh, S., Khomenko, T., Knight, B.A., Alipanah, R., Nguyen, T.V., Shah, C., Vohra, S., Zhuang, J.L., Liu, J., Wepsic, H.T., Jadus, M.R. J. Immunol. (2005) [Pubmed]
  7. Tenidap-modulated proinflammatory cytokine activation of a monocyte cell line. Golding, S., Emery, P., Young, S.P. J. Immunol. (1995) [Pubmed]
  8. Synthesis of ent-alantrypinone. Hart, D.J., Magomedov, N.A. J. Am. Chem. Soc. (2001) [Pubmed]
  9. Selective kinase inhibition by exploiting differential pathway sensitivity. Kung, C., Kenski, D.M., Krukenberg, K., Madhani, H.D., Shokat, K.M. Chem. Biol. (2006) [Pubmed]
  10. Studies on the pharmacological properties of oxindole (2-hydroxyindole) and 5-hydroxyindole: are they involved in hepatic encephalopathy? Moroni, F., Carpenedo, R., Mannaioni, G., Galli, A., Chiarugi, A., Carlà, V., Moneti, G. Adv. Exp. Med. Biol. (1997) [Pubmed]
  11. 3-amino thioacridone inhibits DNA synthesis and induce DNA damage in T-cell acute lymphoblastic leukemia (T-ALL) in a p16-dependent manner. Diccianni, M.B., Yu, J., Meppelink, G., de Vries, M., Shao, L., Gebauer, S., Shih, H., Roberts, W., Kilcoin, N.P., Pullen, J., Carson, D.A., Yu, A.L. J. Exp. Ther. Oncol. (2004) [Pubmed]
  12. Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation by indolinone RPI-1. Lanzi, C., Cassinelli, G., Cuccuru, G., Zaffaroni, N., Supino, R., Vignati, S., Zanchi, C., Yamamoto, M., Zunino, F. Cell. Mol. Life Sci. (2003) [Pubmed]
  13. Electrophysiological studies on oxindole, a neurodepressant tryptophan metabolite. Mannaioni, G., Carpenedo, R., Pugliese, A.M., Corradetti, R., Moroni, F. Br. J. Pharmacol. (1998) [Pubmed]
  14. Polyhydroxylated Indolines and Oxindoles from C-Glycosides via Sequential Henry Reaction, Michael Addition, and Reductive Amination/Amidation. Zou, W., Wu, A.T., Bhasin, M., Sandbhor, M., Wu, S.H. J. Org. Chem. (2007) [Pubmed]
  15. Disposition and metabolism of tenidap in the rat. Fouda, H.G., Avery, M.J., Dalvie, D., Falkner, F.C., Melvin, L.S., Ronfeld, R.A. Drug Metab. Dispos. (1997) [Pubmed]
  16. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells. Bacher, N., Tiefenthaler, M., Sturm, S., Stuppner, H., Ausserlechner, M.J., Kofler, R., Konwalinka, G. Br. J. Haematol. (2006) [Pubmed]
  17. Pentacyclic oxindole alkaloids from Uncaria tomentosa induce human endothelial cells to release a lymphocyte-proliferation-regulating factor. Wurm, M., Kacani, L., Laus, G., Keplinger, K., Dierich, M.P. Planta Med. (1998) [Pubmed]
  18. Uncaria tomentosa (Willd.) D.C.: cat's claw, uña de gato, or savéntaro. Reinhard, K.H. Journal of alternative and complementary medicine (New York, N.Y.) (1999) [Pubmed]
  19. Methanol extracts of Hamelia patens containing oxindole alkaloids relax KCl-induced contraction in rat myometrium. Reyes-Chilpa, R., Rivera, J., Oropeza, M., Mendoza, P., Amekraz, B., Jankowski, C., Campos, M. Biol. Pharm. Bull. (2004) [Pubmed]
  20. Inhibition of transforming activity of the ret/ptc1 oncoprotein by a 2-indolinone derivative. Lanzi, C., Cassinelli, G., Pensa, T., Cassinis, M., Gambetta, R.A., Borrello, M.G., Menta, E., Pierotti, M.A., Zunino, F. Int. J. Cancer (2000) [Pubmed]
  21. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): design, synthesis, enzymatic activities, and X-ray crystallographic analysis. Bramson, H.N., Corona, J., Davis, S.T., Dickerson, S.H., Edelstein, M., Frye, S.V., Gampe, R.T., Harris, P.A., Hassell, A., Holmes, W.D., Hunter, R.N., Lackey, K.E., Lovejoy, B., Luzzio, M.J., Montana, V., Rocque, W.J., Rusnak, D., Shewchuk, L., Veal, J.M., Walker, D.H., Kuyper, L.F. J. Med. Chem. (2001) [Pubmed]
  22. Extending Pummerer reaction chemistry. development of a strategy for the regio- and stereoselective oxidative cyclization of 3-(omega-nucleophile)-tethered indoles. Feldman, K.S., Vidulova, D.B., Karatjas, A.G. J. Org. Chem. (2005) [Pubmed]
  23. Selective formation of oxindole- and formylkynurenine-type products from tryptophan and its peptides treated with a superoxide-generating system in the presence of iron(III)-EDTA: a possible involvement with iron-oxygen complex. Itakura, K., Uchida, K., Kawakishi, S. Chem. Res. Toxicol. (1994) [Pubmed]
  24. Metabolism of 3-methylindole by vaccinia-expressed P450 enzymes: correlation of 3-methyleneindolenine formation and protein-binding. Thornton-Manning, J., Appleton, M.L., Gonzalez, F.J., Yost, G.S. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  25. Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. Woodard, C.L., Li, Z., Kathcart, A.K., Terrell, J., Gerena, L., Lopez-Sanchez, M., Kyle, D.E., Bhattacharjee, A.K., Nichols, D.A., Ellis, W., Prigge, S.T., Geyer, J.A., Waters, N.C. J. Med. Chem. (2003) [Pubmed]
  26. Synthesis and pharmacological profile of an orally-active growth hormone secretagogue, SM-130686. Nagamine, J., Kawamura, T., Tokunaga, T., Hume, W.E., Nagata, R., Nakagawa, T., Taiji, M. Comb. Chem. High Throughput Screen. (2006) [Pubmed]
  27. Suppressive effects of isorhynchophylline on 5-HT2A receptor function in the brain: behavioural and electrophysiological studies. Matsumoto, K., Morishige, R., Murakami, Y., Tohda, M., Takayama, H., Sakakibara, I., Watanabe, H. Eur. J. Pharmacol. (2005) [Pubmed]
  28. Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. Cuccuru, G., Lanzi, C., Cassinelli, G., Pratesi, G., Tortoreto, M., Petrangolini, G., Seregni, E., Martinetti, A., Laccabue, D., Zanchi, C., Zunino, F. J. Natl. Cancer Inst. (2004) [Pubmed]
  29. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's beta-amyloid proteins. Fujiwara, H., Iwasaki, K., Furukawa, K., Seki, T., He, M., Maruyama, M., Tomita, N., Kudo, Y., Higuchi, M., Saido, T.C., Maeda, S., Takashima, A., Hara, M., Ohizumi, Y., Arai, H. J. Neurosci. Res. (2006) [Pubmed]
  30. Conversion of indole to oxindole under methanogenic conditions. Berry, D.F., Madsen, E.L., Bollag, J.M. Appl. Environ. Microbiol. (1987) [Pubmed]
  31. Improved method for the determination of oxindole alkaloids in Uncaria tomentosa by high performance liquid chromatography. Ganzera, M., Muhammad, I., Khan, R.A., Khan, I.A. Planta Med. (2001) [Pubmed]
  32. Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) D.C. cell suspension cultures in a stirred tank bioreactor. Trejo-Tapia, G., Cerda-García-Rojas, C.M., Rodríguez-Monroy, M., Ramos-Valdivia, A.C. Biotechnol. Prog. (2005) [Pubmed]
 
WikiGenes - Universities