The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Decapitation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Decapitation

 

Psychiatry related information on Decapitation

 

High impact information on Decapitation

  • Rats maintained on moderate sodium intake were killed 2 min after the induction of anesthesia with pentobarbital (50 mg/kg i.p.) or by rapid decapitation [7].
  • [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation [8].
  • After decapitation and treatment of epicotyls with IAA, synthetases also appear in a smooth vesicle fraction (density 1.11 g/cm3) which is rich in endoplasmic reticulum (ER) marker enzyme [9].
  • The rate of glucose phosphorylation can be directly calculated from the rate of change in DG6P, the average levels of DG and glucose, and a constant derived from direct comparison of the rate of changes in glucose and DG6P after decapitation [10].
  • All seven organs tested from rats killed by decapitation contained Ins(1,4,5)P3 in concentrations of 13-40 nmol/g; a distribution that bears no resemblance to that reported for its precursor [phosphatidylinositol bis(phosphate)] [11].
 

Chemical compound and disease context of Decapitation

 

Biological context of Decapitation

 

Anatomical context of Decapitation

 

Gene context of Decapitation

  • After these GnRH injections, all rats received 6.6 micrograms GnRH, sc, 1 h before decapitation to determine acute LH and FSH responses [27].
  • In flies that had already released EH, decapitation was always followed within 1 min by the start of ecdysis [28].
  • Reproductive status at the time of decapitation influenced both the level and the number of cells expressing GAL mRNA in the PVN [29].
  • The mice were sacrificed by decapitation 2 h after the last injection and plasma levels of hormones and cytokines and tissue levels of IL-1beta were measured [30].
  • Regardless of the method of blood collection (decapitation or cardiac or orbital puncture), minimal concentrations of PRL were detected in the plasma of hereditary dwarf mice [31].
 

Analytical, diagnostic and therapeutic context of Decapitation

References

  1. Regional differences in arachidonic acid release in rat hippocampal CA1 and CA3 regions during cerebral ischemia. Westerberg, E., Deshpande, J.K., Wieloch, T. J. Cereb. Blood Flow Metab. (1987) [Pubmed]
  2. Peroxidation-induced changes of histamine metabolism and transport of its precursor histidine in rat brain synaptosomes. Rafałowska, U., Wałajtys-Rode, E. Free Radic. Biol. Med. (1991) [Pubmed]
  3. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. Dorman, R.V., Dabrowiecki, Z., Horrocks, L.A. J. Neurochem. (1983) [Pubmed]
  4. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. Husková, Z., Kramer, H.J., Vanourková, Z., Cervenka, L. J. Hypertens. (2006) [Pubmed]
  5. The effects of 17beta-estradiol on ischemia-induced neuronal damage in the gerbil hippocampus. Chen, J., Adachi, N., Liu, K., Arai, T. Neuroscience (1998) [Pubmed]
  6. Inhibitory effects of 6-hydroxydopamine on the clonic convulsions induced by electroshock and decapitation. Fukuda, T., Araki, Y., Suenaga, N. Neuropharmacology (1975) [Pubmed]
  7. Mechanism of sodium modulation of glomerular angiotensin receptors in the rat. Bellucci, A., Wilkes, B.M. J. Clin. Invest. (1984) [Pubmed]
  8. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy. Bassett, M.L., Mullen, K.D., Scholz, B., Fenstermacher, J.D., Jones, E.A. Gastroenterology (1990) [Pubmed]
  9. The site of cellulose synthesis. Hormone treatment alters the intracellular location of alkali-insoluble beta-1,4-glucan (cellulose) synthetase activities. Shore, G., Maclachlan, G.A. J. Cell Biol. (1975) [Pubmed]
  10. Use of nonradioactive 2-deoxyglucose to study compartmentation of brain glucose metabolism and rapid regional changes in rate. McDougal, D.B., Ferrendelli, J.A., Yip, V., Pusateri, M.E., Carter, J.G., Chi, M.M., Norris, B., Manchester, J., Lowry, O.H. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  11. Inositol bis-, tris-, and tetrakis(phosphate)s: analysis in tissues by HPLC. Meek, J.L. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  12. Effect of cyclophosphamide on the immature rat ovary. Ataya, K.M., Valeriote, F.A., Ramahi-Ataya, A.J. Cancer Res. (1989) [Pubmed]
  13. Cyclic AMP-dependent protein kinase is not involved in the in vivo activation of tyrosine hydroxylase in the adrenal gland after decapitation. Tank, A.W., Meligeni, J., Weiner, N. J. Biol. Chem. (1984) [Pubmed]
  14. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. Yinghuai, Z., Peng, A.T., Carpenter, K., Maguire, J.A., Hosmane, N.S., Takagaki, M. J. Am. Chem. Soc. (2005) [Pubmed]
  15. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Morris, S.E., Cox, M.C., Ross, J.J., Krisantini, S., Beveridge, C.A. Plant Physiol. (2005) [Pubmed]
  16. Genes that induce apoptosis: transcriptional regulation in identified, doomed neurons of the Drosophila CNS. Robinow, S., Draizen, T.A., Truman, J.W. Dev. Biol. (1997) [Pubmed]
  17. Immunoreactive and biologically active somatostatin-like material in rat retina. Rorstad, O.P., Brownstein, M.J., Martin, J.B. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  18. Pentobarbital anesthesia during the proestrous afternoon blocks lactotroph proliferation occurring on estrus in female rats. Hashi, A., Mazawa, S., Kato, J., Arita, J. Endocrinology (1995) [Pubmed]
  19. Serum prolactin and LH in early phases of delayed versus direct pseudopregnancy in the rat. Beach, J.E., Tyrey, L., Everett, J.W. Endocrinology (1975) [Pubmed]
  20. Two populations of layer v pyramidal cells of the mouse neocortex: development and sensitivity to anesthetics. Christophe, E., Doerflinger, N., Lavery, D.J., Molnár, Z., Charpak, S., Audinat, E. J. Neurophysiol. (2005) [Pubmed]
  21. Cell cycle regulation during growth-dormancy cycles in pea axillary buds. Devitt, M.L., Stafstrom, J.P. Plant Mol. Biol. (1995) [Pubmed]
  22. Brain ischemia decreases phosphatidylcholine-phospholipase D but not phosphatidylinositol-phospholipase C in rats. Nishida, A., Emoto, K., Shimizu, M., Uozumi, T., Yamawaki, S. Stroke (1994) [Pubmed]
  23. A superfusion system technique for the study of the sites of action of glucocorticoids in the rat hypothalamus-pituitary-adrenal system in vitro. II. Hypothalamus-pituitary cell-adrenal cell superfusion. Vermes, I., Mulder, G.H., Smelik, P.G. Endocrinology (1977) [Pubmed]
  24. Dural mast cells: source of contaminating histamine in analyses of mouse brain histamine levels. Orr, E.L. J. Neurochem. (1984) [Pubmed]
  25. Hormonal and ionic control of the glycogenolytic cascade in rat liver. van de Werve, G., Hue, L., Hers, H.G. Biochem. J. (1977) [Pubmed]
  26. Improved method for isolating synaptosomes from 11 regions of one rat brain: electron microscopic and biochemical characterization and use in the study of drug effects on nerve terminal gamma-aminobutyric acid in vivo. Löscher, W., Böhme, G., Müller, F., Pagliusi, S. J. Neurochem. (1985) [Pubmed]
  27. Pituitary gonadotropin-releasing hormone (GnRH) receptor responses to GnRH in hypothalamus-lesioned rats: inhibition of responses by hyperprolactinemia and evidence that testosterone and estradiol modulate gonadotropin secretion at postreceptor sites. Pieper, D.R., Gala, R.R., Schiff, M.A., Regiani, S.R., Marshall, J.C. Endocrinology (1984) [Pubmed]
  28. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster. Baker, J.D., McNabb, S.L., Truman, J.W. J. Exp. Biol. (1999) [Pubmed]
  29. Effects of lifelong moderate caloric restriction on levels of neuropeptide Y, proopiomelanocortin, and galanin mRNA. McShane, T.M., Wilson, M.E., Wise, P.M. J. Gerontol. A Biol. Sci. Med. Sci. (1999) [Pubmed]
  30. Differential effects of one and repeated endotoxin treatment on pituitary- adrenocortical hormones in the mouse: role of interleukin-1 and tumor necrosis factor-alpha. Nagano, I., Takao, T., Nanamiya, W., Takemura, T., Nishiyama, M., Asaba, K., Makino, S., De Souza, E.B., Hashimoto, K. Neuroimmunomodulation (1999) [Pubmed]
  31. Prolactin status of hereditary dwarf mice. Barkley, M.S., Bartke, A., Gross, D.S., Sinha, Y.N. Endocrinology (1982) [Pubmed]
  32. Nimodipine prevents hyperglycemia-induced cerebral acidosis in middle cerebral artery occluded rats. Berger, L., Hakim, A.M. J. Cereb. Blood Flow Metab. (1989) [Pubmed]
  33. Selective proteasomal dysfunction in the hippocampal CA1 region after transient forebrain ischemia. Asai, A., Tanahashi, N., Qiu, J.H., Saito, N., Chi, S., Kawahara, N., Tanaka, K., Kirino, T. J. Cereb. Blood Flow Metab. (2002) [Pubmed]
  34. Eukaryotic initiation factor 4E degradation during brain ischemia. Neumar, R.W., DeGracia, D.J., White, B.C., McDermott, P.J., Evans, D.R., Krause, G.S. J. Neurochem. (1995) [Pubmed]
  35. Effect of acute ethanol administration on brain levels of tetrahydropapaveroline in L-dopa-treated rats. Cashaw, J.L., Geraghty, C.A., McLaughlin, B.R., Davis, V.E. J. Neurosci. Res. (1987) [Pubmed]
  36. Desensitization of the hypothalamic-pituitary-adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin. Tizabi, Y., Aguilera, G. Neuroendocrinology (1992) [Pubmed]
 
WikiGenes - Universities