The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Heptanol     heptan-1-ol

Synonyms: Gentanol, Hydroxyheptane, n-Heptanol, n-Heptanol-1, C7 alcohol, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Heptanol


Psychiatry related information on Heptanol


High impact information on Heptanol


Chemical compound and disease context of Heptanol


Biological context of Heptanol

  • Heptanol did not significantly effect action potential amplitude or maximum rate of depolarization [14].
  • In contrast to its effect on normal tissues, heptanol caused 75 of 260 previously active sites in the infarcted tissues to become inactive [15].
  • In addition, heptanol significantly inhibited the LPS- plus IFN-gamma-induced up-regulation of the other costimulatory (i.e., CD80 and CD86) and MHC class II molecules expressed by BMDCs, and it significantly reduced their allostimulatory capacity [16].
  • Brief exposure (5-20 min) to heptanol (2.0 mmol/liter) did not cause detectable changes in the expression, phosphorylation, or localization of Cx43, despite strong inhibition of gap junctional intercellular communication [17].
  • Identification occurred by means of functional criteria, i.e. the dependency of gj on (i) junctional membrane potential, (ii) non-junctional membrane potential, and (iii) heptanol [18].

Anatomical context of Heptanol

  • CONCLUSIONS: These results demonstrate that hypercontracture may be transmitted to adjacent myocytes through gap junctions and that heptanol may interfere with this transmission and reduce the final extent of myocardial necrosis during reoxygenation or reperfusion [10].
  • Block of sodium current by heptanol in voltage-clamped canine cardiac Purkinje cells [19].
  • This interpretation was consistent (1) with control experiments using n-heptanol, which increased the component attributed to intercellular junctions but not sarcoplasmic resistivity, and (2) with suspensions of isolated myocytes, which yielded a similar value for the sarcoplasmic resistivity [20].
  • Heptanol decreased the number and activity of osteoclasts [21].
  • Reversible inhibition of gap junctional intercellular communication, synchronous contraction, and synchronism of intracellular Ca2+ fluctuation in cultured neonatal rat cardiac myocytes by heptanol [17].

Associations of Heptanol with other chemical compounds


Gene context of Heptanol

  • Later passes, or early passes treated with heptanol to down-regulate Cx32, released an average of 3.84+/-0.50 ng/ml of T(4)/100 follicles [27].
  • Incubation of the follicles with gap junction uncouplers, 1-heptanol or 1-octanol, had no effect on IGF-I- and b-insulin-induced GVBD, but attenuated the same induced by HCG [28].
  • In contrast, 200 microM and 500 microM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 +/- 5 [29].
  • Basal as well as neurotensin-, secretin-, and VIP-stimulated output returned to the lower control values following removal of heptanol and recovery of normal coupling [11].
  • Thus, we have studied the effects of heptanol and of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the subcellular distribution of PKC, dye coupling, and amylase release of dispersed pancreatic acini [30].

Analytical, diagnostic and therapeutic context of Heptanol


  1. Effects of heptanol, class Ic, and class III drugs on reentrant ventricular tachycardia. Importance of the excitable gap for the inducibility of double-wave reentry. Boersma, L., Brugada, J., Abdollah, H., Kirchhof, C., Allessie, M. Circulation (1994) [Pubmed]
  2. Lipid-mediated delivery of brain-specific angiogenesis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model. Yoon, K.C., Ahn, K.Y., Lee, J.H., Chun, B.J., Park, S.W., Seo, M.S., Park, Y.G., Kim, K.K. Gene Ther. (2005) [Pubmed]
  3. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Lazrak, A., Peracchia, C. Biophys. J. (1993) [Pubmed]
  4. Localized injury in cardiomyocyte network: a new experimental model of ischemia-reperfusion arrhythmias. Arutunyan, A., Webster, D.R., Swift, L.M., Sarvazyan, N. Am. J. Physiol. Heart Circ. Physiol. (2001) [Pubmed]
  5. Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. Rodríguez-Sinovas, A., García-Dorado, D., Ruiz-Meana, M., Soler-Soler, J. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  6. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat. Solomon, I.C., Chon, K.H., Rodriguez, M.N. J. Neurophysiol. (2003) [Pubmed]
  7. A novel signaling mechanism between gas and blood compartments of the lung. Kuebler, W.M., Parthasarathi, K., Wang, P.M., Bhattacharya, J. J. Clin. Invest. (2000) [Pubmed]
  8. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. Meda, P., Bosco, D., Chanson, M., Giordano, E., Vallar, L., Wollheim, C., Orci, L. J. Clin. Invest. (1990) [Pubmed]
  9. The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. Guan, X., Cravatt, B.F., Ehring, G.R., Hall, J.E., Boger, D.L., Lerner, R.A., Gilula, N.B. J. Cell Biol. (1997) [Pubmed]
  10. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Garcia-Dorado, D., Inserte, J., Ruiz-Meana, M., González, M.A., Solares, J., Juliá, M., Barrabés, J.A., Soler-Soler, J. Circulation (1997) [Pubmed]
  11. Gap junctional coupling modulates secretion of exocrine pancreas. Meda, P., Bruzzone, R., Chanson, M., Bosco, D., Orci, L. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  12. Carbenoxolone and mefloquine suppress tremor in the harmaline mouse model of essential tremor. Martin, F.C., Handforth, A. Mov. Disord. (2006) [Pubmed]
  13. Alcoholysis and reverse hydrolysis reactions in organic one-phase system with a hyperthermophilic beta-glycosidase. García-Garibay, M., López-Munguía, A., Barzana, E. Biotechnol. Bioeng. (2000) [Pubmed]
  14. Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium. Balke, C.W., Lesh, M.D., Spear, J.F., Kadish, A., Levine, J.H., Moore, E.N. Circ. Res. (1988) [Pubmed]
  15. Effect of cellular uncoupling by heptanol on conduction in infarcted myocardium. Spear, J.F., Balke, C.W., Lesh, M.D., Kadish, A.H., Levine, J.L., Moore, E.N. Circ. Res. (1990) [Pubmed]
  16. Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs. Matsue, H., Yao, J., Matsue, K., Nagasaka, A., Sugiyama, H., Aoki, R., Kitamura, M., Shimada, S. J. Immunol. (2006) [Pubmed]
  17. Reversible inhibition of gap junctional intercellular communication, synchronous contraction, and synchronism of intracellular Ca2+ fluctuation in cultured neonatal rat cardiac myocytes by heptanol. Kimura, H., Oyamada, Y., Ohshika, H., Mori, M., Oyamada, M. Exp. Cell Res. (1995) [Pubmed]
  18. Electrical coupling between cells of the insect Aedes albopictus. Bukauskas, F., Kempf, C., Weingart, R. J. Physiol. (Lond.) (1992) [Pubmed]
  19. Block of sodium current by heptanol in voltage-clamped canine cardiac Purkinje cells. Nelson, W.L., Makielski, J.C. Circ. Res. (1991) [Pubmed]
  20. Changes in cell-to-cell electrical coupling associated with left ventricular hypertrophy. Cooklin, M., Wallis, W.R., Sheridan, D.J., Fry, C.H. Circ. Res. (1997) [Pubmed]
  21. Bone-resorbing osteoclasts contain gap-junctional connexin-43. Ilvesaro, J., Väänänen, K., Tuukkanen, J. J. Bone Miner. Res. (2000) [Pubmed]
  22. Triggered propagated contractions in rat cardiac trabeculae. Inhibition by octanol and heptanol. Zhang, Y.M., Miura, M., ter Keurs, H.E. Circ. Res. (1996) [Pubmed]
  23. Effects of intracellular angiotensin II in vascular smooth muscle cells. Haller, H., Lindschau, C., Erdmann, B., Quass, P., Luft, F.C. Circ. Res. (1996) [Pubmed]
  24. Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. Klepeis, V.E., Cornell-Bell, A., Trinkaus-Randall, V. J. Cell. Sci. (2001) [Pubmed]
  25. Vascular gap junctional communication is increased in mineralocorticoid-salt hypertension. Watts, S.W., Webb, R.C. Hypertension (1996) [Pubmed]
  26. Partial molar volumes of some 1-alkanols in erythrocyte ghosts and lipid bilayers. Kita, Y., Miller, K.W. Biochemistry (1982) [Pubmed]
  27. A spontaneously arising mutation in connexin32 with repeated passage of FRTL-5 cells coincides with increased growth rate and reduced thyroxine release. Green, L.M., Murray, D.K., Tran, D.T., Nelson, G.A., Shah, M.M., Luben, R.A. J. Mol. Endocrinol. (2001) [Pubmed]
  28. In vitro effects of insulin-like growth factors and insulin on oocyte maturation and maturation-inducing steroid production in ovarian follicles of common carp, Cyprinus carpio. Mukherjee, D., Mukherjee, D., Sen, U., Paul, S., Bhattacharyya, S.P. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2006) [Pubmed]
  29. Gap junctions in isolated rat aorta: evidence for contractile responses that exhibit a differential dependence on intercellular communication. Christ, G.J., Brink, P.R. Braz. J. Med. Biol. Res. (2000) [Pubmed]
  30. Increase in pancreatic exocrine secretion during uncoupling: evidence for a protein kinase C-independent effect. Chanson, M., Meda, P., Bruzzone, R. Exp. Cell Res. (1989) [Pubmed]
  31. Differential effects of a segment of slow conduction on reentrant ventricular tachycardia in the rabbit heart. Haberl, K., Allessie, M. Circulation (1999) [Pubmed]
  32. Inhibitors of gap junctions attenuate myogenic tone in cerebral arteries. Lagaud, G., Karicheti, V., Knot, H.J., Christ, G.J., Laher, I. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
WikiGenes - Universities