The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Bmpr2  -  bone morphogenetic protein receptor, type...

Mus musculus

Synonyms: 2610024H22Rik, AL117858, AW546137, BB189135, BMP type II receptor, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bmpr2

 

High impact information on Bmpr2

 

Chemical compound and disease context of Bmpr2

  • These results show that BMP-2/insulin treatment induces full differentiation toward hypertrophy, whereas treatment with PTH/dexamethasone slows and limits differentiation [9].
 

Biological context of Bmpr2

  • At the late bell stage, BMP-2 or -4 may induce cell differentiation [10].
  • Further investigation of the expression of these receptors in lenses of transgenic mice, which ectopically express a truncated TbetaRII, showed marked up regulation and aberrant expression of ALK3, but not BMPRII or ActRII [11].
  • INTRODUCTION: The expression of bone morphogenetic protein receptors (BMPRs) and Noggin during ectopic bone formation after implantation of BMP-2 into the back muscles of adult mice was investigated in this study [12].
  • A region encompassing the chondrocyte-specific enhancer, localized in intron I of type-II collagen alpha1 chain (Col2a1) gene, is sufficient to confer BMP-2-dependent transcriptional induction of type-II collagen gene expression [13].
  • Taken together, these results indicate that SOX6 is an important downstream mediator of BMP-2 signaling in chondrogenesis [13].
 

Anatomical context of Bmpr2

  • Here we report that the ablation of Bmpr2 in pulmonary artery smooth muscle cells, using an ex vivo conditional knock-out (Cre-lox) approach, as well as small interfering RNA specific for Bmpr2, does not abolish BMP signaling [14].
  • BMPR-II mRNA exhibits peak expression within the cerebellar Purkinje cell layer and the hippocampus, as well as within cranial ganglia [15].
  • In this study, in situ hybridization analyses demonstrate that BMP-specific type I (BMPR-IA and BMPR-IB) and type II (BMPR-II) receptor mRNAs are expressed at significant levels in multiple regions of the CNS, cranial ganglia, and peripheral sensory and autonomic ganglia during the embryonic and neonatal periods [15].
  • The BMP type-II receptor (BMPR-II) ECD antagonised oocyte and GDF9 bioactivity dose-dependently, but had no or minimal effect on TGFbeta1 and activin-A bioactivity, demonstrating its specificity [16].
  • Our results suggest that the function of BMPR-II is essential for epiblast differentiation and mesoderm induction during early mouse development [17].
 

Associations of Bmpr2 with chemical compounds

  • Multipotential mouse embryonic mesenchymal cells, C3H10T1/2, were cultured on 2-dimensional P-C fibrils or 3-dimensional P-C/BMP-2-coated (P-C-B) PLA scaffolds [18].
  • Recent studies from our lab indicate that when human bone marrow MSC are placed in primary culture, osteogenesis can be induced by dexamethasone (Dex), but not by BMP-2, -4, or -7 [19].
  • The bioreactor was created by implanting an osteoconductive hydroxyapatite scaffold pre-loaded with saline as a control or with bone morphogenetic protein-2 (BMP-2) to the murine femoral artery [20].
  • Compared with previous reports using a brief BMP-2 supplementation early in differentiation, prolonged exposure increased chondrogenic output, while supplementation with insulin and ascorbic acid prevented dedifferentiation [21].
  • These findings provide the first evidence for an interaction between BMPR-II-mediated signaling and the serotonin pathway, perturbation of which may be critical to the pathogenesis of PAH [22].
 

Other interactions of Bmpr2

 

Analytical, diagnostic and therapeutic context of Bmpr2

  • To elucidate the function of BMPR-II in mammalian development, we generated BMPR-II mutant mice by gene targeting [17].
  • This capacity of adenovirus-mediated overproduction of BMP-2 to induce chondrogenesis (and subsequent endochondral ossification) should be useful for tissue engineering of cartilage and bone [27].
  • In vitro protein production was determined with luciferase assay or ELISA (for BMP-2 production) weekly for 12 weeks [28].
  • The expression of BMPR-IB and BMPR-II mRNA was up-regulated by HGF, as shown by both conventional PCR and quantitative PCR [4].
  • An elevation of BMPR-IB and BMPR-II at the protein level was confirmed by both Western blot analysis and immunocytochemical staining [4].

References

  1. BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Beppu, H., Ichinose, F., Kawai, N., Jones, R.C., Yu, P.B., Zapol, W.M., Miyazono, K., Li, E., Bloch, K.D. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  2. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. Horiki, M., Imamura, T., Okamoto, M., Hayashi, M., Murai, J., Myoui, A., Ochi, T., Miyazono, K., Yoshikawa, H., Tsumaki, N. J. Cell Biol. (2004) [Pubmed]
  3. Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. Uusitalo, H., Hiltunen, A., Ahonen, M., Gao, T.J., Lefebvre, V., Harley, V., Kähäri, V.M., Vuorio, E. J. Bone Miner. Res. (2001) [Pubmed]
  4. Hepatocyte growth factor up-regulates the expression of the bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-II, in human prostate cancer cells. Ye, L., Lewis-Russell, J.M., Davies, G., Sanders, A.J., Kynaston, H., Jiang, W.G. Int. J. Oncol. (2007) [Pubmed]
  5. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. Bhatia, M., Bonnet, D., Wu, D., Murdoch, B., Wrana, J., Gallacher, L., Dick, J.E. J. Exp. Med. (1999) [Pubmed]
  6. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Tsuji, K., Bandyopadhyay, A., Harfe, B.D., Cox, K., Kakar, S., Gerstenfeld, L., Einhorn, T., Tabin, C.J., Rosen, V. Nat. Genet. (2006) [Pubmed]
  7. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Hallahan, A.R., Pritchard, J.I., Chandraratna, R.A., Ellenbogen, R.G., Geyer, J.R., Overland, R.P., Strand, A.D., Tapscott, S.J., Olson, J.M. Nat. Med. (2003) [Pubmed]
  8. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Nakashima, K., Yanagisawa, M., Arakawa, H., Kimura, N., Hisatsune, T., Kawabata, M., Miyazono, K., Taga, T. Science (1999) [Pubmed]
  9. Establishment of a novel chondrocytic cell line N1511 derived from p53-null mice. Kamiya, N., Jikko, A., Kimata, K., Damsky, C., Shimizu, K., Watanabe, H. J. Bone Miner. Res. (2002) [Pubmed]
  10. Expression patterns of BMPRs in the developing mouse molar. Nadiri, A., Kuchler-Bopp, S., Perrin-Schmitt, F., Lesot, H. Cell Tissue Res. (2006) [Pubmed]
  11. BMP and activin receptor expression in lens development. de Iongh, R.U., Chen, Y., Kokkinos, M.I., McAvoy, J.W. Mol. Vis. (2004) [Pubmed]
  12. Temporal and spatial expression profiles of BMP receptors and noggin during BMP-2-induced ectopic bone formation. Nakamura, Y., Wakitani, S., Nakayama, J., Wakabayashi, S., Horiuchi, H., Takaoka, K. J. Bone Miner. Res. (2003) [Pubmed]
  13. Induction of the Sry-related factor SOX6 contributes to bone morphogenetic protein-2-induced chondroblastic differentiation of C3H10T1/2 cells. Fernández-Lloris, R., Viñals, F., López-Rovira, T., Harley, V., Bartrons, R., Rosa, J.L., Ventura, F. Mol. Endocrinol. (2003) [Pubmed]
  14. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. Yu, P.B., Beppu, H., Kawai, N., Li, E., Bloch, K.D. J. Biol. Chem. (2005) [Pubmed]
  15. Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. Zhang, D., Mehler, M.F., Song, Q., Kessler, J.A. J. Neurosci. (1998) [Pubmed]
  16. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. Gilchrist, R.B., Ritter, L.J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R.A., Hickey, T.E., Ritvos, O., Mottershead, D.G. J. Cell. Sci. (2006) [Pubmed]
  17. BMP type II receptor is required for gastrulation and early development of mouse embryos. Beppu, H., Kawabata, M., Hamamoto, T., Chytil, A., Minowa, O., Noda, T., Miyazono, K. Dev. Biol. (2000) [Pubmed]
  18. Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices. Yang, W., Gomes, R.R., Brown, A.J., Burdett, A.R., Alicknavitch, M., Farach-Carson, M.C., Carson, D.D. Tissue Eng. (2006) [Pubmed]
  19. BMP responsiveness in human mesenchymal stem cells. Diefenderfer, D.L., Osyczka, A.M., Reilly, G.C., Leboy, P.S. Connect. Tissue Res. (2003) [Pubmed]
  20. The application of a murine bone bioreactor as a model of tumor: bone interaction. Halpern, J., Lynch, C.C., Fleming, J., Hamming, D., Martin, M.D., Schwartz, H.S., Matrisian, L.M., Holt, G.E. Clin. Exp. Metastasis (2006) [Pubmed]
  21. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. zur Nieden, N.I., Kempka, G., Rancourt, D.E., Ahr, H.J. BMC Dev. Biol. (2005) [Pubmed]
  22. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Long, L., MacLean, M.R., Jeffery, T.K., Morecroft, I., Yang, X., Rudarakanchana, N., Southwood, M., James, V., Trembath, R.C., Morrell, N.W. Circ. Res. (2006) [Pubmed]
  23. Constitutively active BMP type I receptors transduce BMP-2 signals without the ligand in C2C12 myoblasts. Akiyama, S., Katagiri, T., Namiki, M., Yamaji, N., Yamamoto, N., Miyama, K., Shibuya, H., Ueno, N., Wozney, J.M., Suda, T. Exp. Cell Res. (1997) [Pubmed]
  24. Developmental pattern of expression of BMP receptors and Smads and activation of Smad1 and Smad5 by BMP9 in mouse basal forebrain. Lopez-Coviella, I., Mellott, T.M., Kovacheva, V.P., Berse, B., Slack, B.E., Zemelko, V., Schnitzler, A., Blusztajn, J.K. Brain Res. (2006) [Pubmed]
  25. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. Wang, S.N., Lapage, J., Hirschberg, R. J. Am. Soc. Nephrol. (2001) [Pubmed]
  26. A chimeric serine/threonine kinase receptor system reveals the potential of multiple type II receptors to cooperate with transforming growth factor-beta type I receptor. Muramatsu, M., Yan, J., Eto, K., Tomoda, T., Yamada, R., Arai, K. Mol. Biol. Cell (1997) [Pubmed]
  27. Induction of periosteal callus formation by bone morphogenetic protein-2 employing adenovirus-mediated gene delivery. Uusitalo, H., Hiltunen, A., Ahonen, M., Kähäri, V.M., Aro, H., Vuorio, E. Matrix Biol. (2001) [Pubmed]
  28. In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. Feeley, B.T., Conduah, A.H., Sugiyama, O., Krenek, L., Chen, I.S., Lieberman, J.R. J. Orthop. Res. (2006) [Pubmed]
 
WikiGenes - Universities