The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Eef2  -  eukaryotic translation elongation factor 2

Mus musculus

Synonyms: EF-2, Ef-2, Elongation factor 2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Eef2

  • The ability of GA to inhibit the growth of glioma cells was abrogated by overexpressing EF-2 kinase [1].
  • Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin [1].
  • Pseudomonas exotoxin A is a single chain toxin with three structural domains that inhibits protein synthesis in eukaryotic cells by catalyzing ADP ribosylation of elongation factor 2 [2].
  • The 133,000 X g supernatant fraction prepared from ascites cells in 20 mM KCl (low CKl supernatant) contained the initiation factors EIF-1 and EIF-2 (and the elongation factore EF-1 and EF-2) but lacked EIF-3; thus, low KCl supernatant could be used to assay for EIF-3 [3].
  • Elongation factor 2 (EF-2) from S. acidocaldarius was cloned in E. coli and the expressed gene product was used in order to adsorb all anti-EF-2 antibodies which do not contain the ADP-ribosyl group within their epitopes, as E. coli is unable to synthesize the ADP-ribosyl acceptor diphthamide [4].

High impact information on Eef2


Chemical compound and disease context of Eef2


Biological context of Eef2


Anatomical context of Eef2

  • Treatment of cell lines for 24-48 h of GA or 17-AAG disrupted EF-2-kinase/Hsp90 interactions as measured by coimmunoprecipitation, resulting in a decreased amount of recoverable kinase in cell lysates [1].
  • All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2 [16].
  • Fibroblast attachment to EF-2 and EF-4 was mediated by syndecan-2 [17].
  • Thus, a high polyribosomes/monomers ratio and both increased proteolysis and decreased ADP-ribosylatable concentration of elongation factor 2 (EF-2) were shown [18].
  • Domain I is responsible for cell recognition, II for translocation of PE across membranes and III for ADP ribosylation of elongation factor 2 [19].

Associations of Eef2 with chemical compounds


Physical interactions of Eef2


Enzymatic interactions of Eef2


Regulatory relationships of Eef2


Other interactions of Eef2


Analytical, diagnostic and therapeutic context of Eef2


  1. Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Yang, J., Yang, J.M., Iannone, M., Shih, W.J., Lin, Y., Hait, W.N. Cancer Res. (2001) [Pubmed]
  2. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Hwang, J., Fitzgerald, D.J., Adhya, S., Pastan, I. Cell (1987) [Pubmed]
  3. Preparation and characterization of eukaryotic initiation factor EIF-3. Formation of binary (EIF-3-Met-tRNAf) and ternary (EIF-3-Met-tRNAf-GTP) complexes. Ranu, R.S., Wool, I.G. J. Biol. Chem. (1976) [Pubmed]
  4. Production of an antiserum specific to the ADP-ribosylated form of elongation factor 2 from archaebacteria and eukaryotes. Siegmund, K.D., Klink, F. FEBS Lett. (1992) [Pubmed]
  5. Sequence diversity within a subgroup of mouse immunoglobulin kappa chains controlled by the IgK-Ef2 locus. Lazure, C., Hum, W.T., Gibson, D.M. J. Exp. Med. (1981) [Pubmed]
  6. OVCA1: tumor suppressor gene. Chen, C.M., Behringer, R.R. Curr. Opin. Genet. Dev. (2005) [Pubmed]
  7. N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-aspartate receptors in controlling protein synthesis. Scheetz, A.J., Nairn, A.C., Constantine-Paton, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  8. Expression of functional diphtheria toxin receptors on highly toxin-sensitive mouse cells that specifically bind radioiodinated toxin. Naglich, J.G., Rolf, J.M., Eidels, L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  9. Dph3, a small protein required for diphthamide biosynthesis, is essential in mouse development. Liu, S., Wiggins, J.F., Sreenath, T., Kulkarni, A.B., Ward, J.M., Leppla, S.H. Mol. Cell. Biol. (2006) [Pubmed]
  10. Mechanism of action of Pseudomonas aeruginosa exotoxin A in experimental mouse infections: adenosine diphosphate ribosylation of elongation factor 2. Pavlovskis, O.R., Iglewski, B.H., Pollack, M. Infect. Immun. (1978) [Pubmed]
  11. Experimental studies on the pathogenesis of infections due to Pseudomonas aeruginosa: direct evidence for toxin production during Pseudomonas infection of burned skin tissues. Saelinger, C.B., Snell, K., Holder, I.A. J. Infect. Dis. (1977) [Pubmed]
  12. Regulation of protein-synthesis elongation-factor-2 kinase by cAMP in adipocytes. Diggle, T.A., Redpath, N.T., Heesom, K.J., Denton, R.M. Biochem. J. (1998) [Pubmed]
  13. Simplified cosmid vectors for gene transfer to cultured mammalian cells: isolation of the gene for elongation factor 2 from the mouse. Ishiura, M., Ohashi, H., Hazumi, N., Uchida, T., Okada, Y. Gene (1989) [Pubmed]
  14. A major group of mouse kappa chains controlled by the chromosome 6 locus, IgK-Ef2. Lazure, C., Hum, W.T., Gibson, D.M. J. Exp. Med. (1980) [Pubmed]
  15. Overlapping positive and negative regulatory elements determine lens-specific activity of the delta 1-crystallin enhancer. Kamachi, Y., Kondoh, H. Mol. Cell. Biol. (1993) [Pubmed]
  16. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells. Didsbury, J.R., Moehring, J.M., Moehring, T.J. Mol. Cell. Biol. (1983) [Pubmed]
  17. Biological activities of homologous loop regions in the laminin alpha chain G domains. Suzuki, N., Nakatsuka, H., Mochizuki, M., Nishi, N., Kadoya, Y., Utani, A., Oishi, S., Fujii, N., Kleinman, H.K., Nomizu, M. J. Biol. Chem. (2003) [Pubmed]
  18. Impairment of mineralocorticoid receptor (MR)-dependent biological response by oxidative stress and aging: correlation with post-translational modification of MR and decreased ADP-ribosylatable level of elongating factor 2 in kidney cells. Piwien-Pilipuk, G., Ayala, A., Machado, A., Galigniana, M.D. J. Biol. Chem. (2002) [Pubmed]
  19. Mutational analysis of domain I of Pseudomonas exotoxin. Mutations in domain I of Pseudomonas exotoxin which reduce cell binding and animal toxicity. Jinno, Y., Chaudhary, V.K., Kondo, T., Adhya, S., FitzGerald, D.J., Pastan, I. J. Biol. Chem. (1988) [Pubmed]
  20. Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. Marin, P., Nastiuk, K.L., Daniel, N., Girault, J.A., Czernik, A.J., Glowinski, J., Nairn, A.C., Prémont, J. J. Neurosci. (1997) [Pubmed]
  21. 2-Deoxyglucose and NMDA inhibit protein synthesis in neurons and regulate phosphorylation of elongation factor-2 by distinct mechanisms. Maus, M., Torrens, Y., Gauchy, C., Bretin, S., Nairn, A.C., Glowinski, J., Premont, J. J. Neurochem. (2006) [Pubmed]
  22. Mg2+ and Ca2+ differentially regulate DNA binding and dimerization of DREAM. Osawa, M., Dace, A., Tong, K.I., Valiveti, A., Ikura, M., Ames, J.B. J. Biol. Chem. (2005) [Pubmed]
  23. The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Czeta. Kouchi, Z., Shikano, T., Nakamura, Y., Shirakawa, H., Fukami, K., Miyazaki, S. J. Biol. Chem. (2005) [Pubmed]
  24. Generation of neutralizing antipeptide antibodies to the enzymatic domain of Pseudomonas aeruginosa exotoxin A. Elzaim, H.S., Chopra, A.K., Peterson, J.W., Goodheart, R., Heggers, J.P. Infect. Immun. (1998) [Pubmed]
  25. Elongation factor-2 kinase: effective inhibition by the novel protein kinase inhibitor rottlerin and relative insensitivity towards staurosporine. Gschwendt, M., Kittstein, W., Marks, F. FEBS Lett. (1994) [Pubmed]
  26. Prothymosin alpha stimulates Ca2+-dependent phosphorylation of elongation factor 2 in cellular extracts. Vega, F.V., Vidal, A., Hellman, U., Wernstedt, C., Domínguez, F. J. Biol. Chem. (1998) [Pubmed]
  27. Constitutive and inducible stress proteins dominate the proteome of the murine inner medullary collecting duct-3 (mIMCD3) cell line. Valkova, N., Kültz, D. Biochim. Biophys. Acta (2006) [Pubmed]
  28. PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia. Owen, C.R., Kumar, R., Zhang, P., McGrath, B.C., Cavener, D.R., Krause, G.S. J. Neurochem. (2005) [Pubmed]
  29. Overexpression of the catalytic subunit of protein phosphatase 2A impairs cardiac function. Gergs, U., Boknik, P., Buchwalow, I., Fabritz, L., Matus, M., Justus, I., Hanske, G., Schmitz, W., Neumann, J. J. Biol. Chem. (2004) [Pubmed]
  30. Modulation of diphthamide synthesis by 5'-deoxy-5'-methylthioadenosine in murine lymphoma cells. Yamanaka, H., Kajander, E.O., Carson, D.A. Biochim. Biophys. Acta (1986) [Pubmed]
  31. Identification of a 100-kDa phosphoprotein in developing murine embryos as elongation factor 2. Brown, T.L., Fischer, W.C., Collins, M.D., De, B.K., Scott, W.J. Arch. Biochem. Biophys. (1994) [Pubmed]
  32. Amplification of a long sequence that includes a processed pseudogene for elongation factor 2 in the mouse. Koide, T., Ishiura, M., Hazumi, N., Shiroishi, T., Okada, Y., Uchida, T. Genomics (1990) [Pubmed]
WikiGenes - Universities