The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

EEF2  -  eukaryotic translation elongation factor 2

Homo sapiens

Synonyms: EEF-2, EF-2, EF2, Elongation factor 2, SCA26
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of EEF2


Psychiatry related information on EEF2


High impact information on EEF2

  • Proliferating-cell nuclear antigen and c-myc mRNA concentrations and bromodeoxyuridine incorporation were decreased in the EF2-decoy group by medians of 73% [IQR 53-84], 70% [50-79], and 74% [56-83], respectively) but not in the scrambled-oligodeoxynucleotide group (p<0.0001) [6].
  • There are two subclasses of cellular enzymes: the ectoenzymes that modify targets such as integrins, defensin and other cell surface molecules; and the intracellular enzymes that act on proteins involved in cell signalling and metabolism, such as the beta-subunit of heterotrimeric G proteins, GRP78/BiP and elongation factor 2 [7].
  • The P-protein complex of eukaryotic ribosomes forms a lateral stalk structure in the active site of the large ribosomal subunit and is thought to assist in the elongation phase of translation by stimulating GTPase activity of elongation factor-2 and removal of deacylated tRNA [8].
  • Increased phosphorylation of elongation factor 2 during mitosis in transformed human amnion cells correlates with a decreased rate of protein synthesis [9].
  • Elongation factor 2 was identified in the two-dimensional gel patterns of asynchronous human amnion cells (AMA) by comigration with purified rabbit reticulocyte elongation factor 2 and by two-dimensional gel immunoblot analysis using a specific rabbit polyclonal antibody [9].

Chemical compound and disease context of EEF2


Biological context of EEF2


Anatomical context of EEF2


Associations of EEF2 with chemical compounds

  • In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively [22].
  • We postulate that this modification system is involved in the conversion of a single histidine residue in EF-2 to the specific target of toxin-catalyzed ADP-ribosylation, the novel amino acid X [3].
  • Preliminary results also indicate that the isolated A chain is about an order of magnitude more active in incorporating adenosine diphosphoribose into translocase (elongation factor 2) than whole or nicked toxin is under identical conditions [23].
  • NMR spectral analysis of the novel amino acid, diphthamide, in elongation factor 2 which is ADP-ribosylated by diphtheria toxin suggests that it is 2-[3-carboxyamido-3-(trimethylammonio)propyl]histidine [24].
  • Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis [25].

Physical interactions of EEF2

  • S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium [22].

Regulatory relationships of EEF2


Other interactions of EEF2

  • Paradoxically, activation of eEF2 kinase (eEF2K), the only known kinase that regulates eEF2, was observed only at 12 hours after SCH66336 treatment [1].
  • The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively [22].
  • On the other hand, eEF2 and enolase I may be the downstream targets of the MAPK pathway [28].
  • Activation of CaM kinase III leads to the selective phosphorylation of elongation factor 2 (eEF-2) and transient inhibition of protein synthesis [29].
  • By contrast, U37 is encoded in elongation factor 2 gene [30].

Analytical, diagnostic and therapeutic context of EEF2


  1. Farnesyltransferase inhibitor SCH66336 induces rapid phosphorylation of eukaryotic translation elongation factor 2 in head and neck squamous cell carcinoma cells. Ren, H., Tai, S.K., Khuri, F., Chu, Z., Mao, L. Cancer Res. (2005) [Pubmed]
  2. Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Yang, J., Yang, J.M., Iannone, M., Shih, W.J., Lin, Y., Hait, W.N. Cancer Res. (2001) [Pubmed]
  3. Posttranslational modification of elongation factor 2 in diphtheria-toxin-resistant mutants of CHO-K1 cells. Moehring, J.M., Moehring, T.J., Danley, D.E. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  4. Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. St-Amand, J., Okamura, K., Matsumoto, K., Shimizu, S., Sogawa, Y. FASEB J. (2001) [Pubmed]
  5. Increased phosphorylation of elongation factor 2 in Alzheimer's disease. Johnson, G., Gotlib, J., Haroutunian, V., Bierer, L., Nairn, A.C., Merril, C., Wallace, W. Brain Res. Mol. Brain Res. (1992) [Pubmed]
  6. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Mann, M.J., Whittemore, A.D., Donaldson, M.C., Belkin, M., Conte, M.S., Polak, J.F., Orav, E.J., Ehsan, A., Dell'Acqua, G., Dzau, V.J. Lancet (1999) [Pubmed]
  7. Functional aspects of protein mono-ADP-ribosylation. Corda, D., Di Girolamo, M. EMBO J. (2003) [Pubmed]
  8. Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. Szick, K., Springer, M., Bailey-Serres, J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Increased phosphorylation of elongation factor 2 during mitosis in transformed human amnion cells correlates with a decreased rate of protein synthesis. Celis, J.E., Madsen, P., Ryazanov, A.G. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  10. The post-translational trimethylation of diphthamide studied in vitro. Moehring, J.M., Moehring, T.J. J. Biol. Chem. (1988) [Pubmed]
  11. Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of expression, and G-domain modeling. Perentesis, J.P., Phan, L.D., Gleason, W.B., LaPorte, D.C., Livingston, D.M., Bodley, J.W. J. Biol. Chem. (1992) [Pubmed]
  12. Mutations in the elongation factor 2 gene which confer resistance to diphtheria toxin and Pseudomonas exotoxin A. Genetic and biochemical analyses. Foley, B.T., Moehring, J.M., Moehring, T.J. J. Biol. Chem. (1995) [Pubmed]
  13. ADP-ribosylarginine glycohydrolase catalyzing the release of ADP-ribose from the cholera toxin-modified alpha-subunits of GTP-binding proteins. Maehama, T., Nishina, H., Katada, T. J. Biochem. (1994) [Pubmed]
  14. Use of biotinylated NAD to label and purify ADP-ribosylated proteins. Zhang, J. Meth. Enzymol. (1997) [Pubmed]
  15. Chromosomal assignment of the gene for human elongation factor 2. Kaneda, Y., Yoshida, M.C., Kohno, K., Uchida, T., Okada, Y. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  16. Cloning and sequence analysis of a cDNA from human ovarian granulosa cells encoding the C-terminal part of human elongation factor 2. Rapp, G., Mucha, J., Einspanier, R., Luck, M., Scheit, K.H. Biol. Chem. Hoppe-Seyler (1988) [Pubmed]
  17. Construction of a plasmid containing the complete coding region of human elongation factor 2. Hanes, J., Freudenstein, J., Rapp, G., Scheit, K.H. Biol. Chem. Hoppe-Seyler (1992) [Pubmed]
  18. Study of localization of the protein-synthesizing machinery along actin filament bundles. Shestakova, E.A., Motuz, L.P., Minin, A.A., Gavrilova, L.P. Cell Biol. Int. (1993) [Pubmed]
  19. Complete sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic amplification of cDNA from human ovarian granulosa cells. Rapp, G., Klaudiny, J., Hagendorff, G., Luck, M.R., Scheit, K.H. Biol. Chem. Hoppe-Seyler (1989) [Pubmed]
  20. Kinetic determination of the effects of ADP-ribosylation on the interaction of eukaryotic elongation factor 2 with ribosomes. Nygård, O., Nilsson, L. J. Biol. Chem. (1990) [Pubmed]
  21. Alcohol Regulates Eukaryotic Elongation Factor 2 Phosphorylation via an AMP-activated Protein Kinase-dependent Mechanism in C2C12 Skeletal Myocytes. Hong-Brown, L.Q., Brown, C.R., Huber, D.S., Lang, C.H. J. Biol. Chem. (2007) [Pubmed]
  22. Calcium-binding properties of wild-type and EF-hand mutants of S100B in the presence and absence of a peptide derived from the C-terminal negative regulatory domain of p53. Markowitz, J., Rustandi, R.R., Varney, K.M., Wilder, P.T., Udan, R., Wu, S.L., Horrocks, W.D., Weber, D.J. Biochemistry (2005) [Pubmed]
  23. Investigations into the relationship between structure and function of diphtheria toxin. Everse, J., Lappi, D.A., Beglau, J.M., Lee, C.L., Kaplan, N.O. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  24. ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. Van Ness, B.G., Howard, J.B., Bodley, J.W. J. Biol. Chem. (1980) [Pubmed]
  25. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha. Morimoto, H., Bonavida, B. J. Immunol. (1992) [Pubmed]
  26. Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. Chung, H., Nairn, A.C., Murata, K., Brautigan, D.L. Biochemistry (1999) [Pubmed]
  27. Minireview: enzymatic properties of ribosome-inactivating proteins (RIPs) and related toxins. Fong, W.P., Wong, R.N., Go, T.T., Yeung, H.W. Life Sci. (1991) [Pubmed]
  28. A proteomic analysis of the effect of mapk pathway activation on l-glutamate-induced neuronal cell death. Kang, S., Kim, E.Y., Bahn, Y.J., Chung, J.W., Lee, d.o. .H., Park, S.G., Yoon, T.S., Park, B.C., Bae, K.H. Cell. Mol. Biol. Lett. (2007) [Pubmed]
  29. Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer. Parmer, T.G., Ward, M.D., Yurkow, E.J., Vyas, V.H., Kearney, T.J., Hait, W.N. Br. J. Cancer (1999) [Pubmed]
  30. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. Nicoloso, M., Qu, L.H., Michot, B., Bachellerie, J.P. J. Mol. Biol. (1996) [Pubmed]
  31. The peptide recognized by HLA-A68.2-restricted, squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Hogan, K.T., Eisinger, D.P., Cupp, S.B., Lekstrom, K.J., Deacon, D.D., Shabanowitz, J., Hunt, D.F., Engelhard, V.H., Slingluff, C.L., Ross, M.M. Cancer Res. (1998) [Pubmed]
  32. Insulin rapidly induces the biosynthesis of elongation factor 2. Levenson, R.M., Nairn, A.C., Blackshear, P.J. J. Biol. Chem. (1989) [Pubmed]
  33. Complete nucleotide sequence and characterization of the 5'-flanking region of mammalian elongation factor 2 gene. Nakanishi, T., Kohno, K., Ishiura, M., Ohashi, H., Uchida, T. J. Biol. Chem. (1988) [Pubmed]
WikiGenes - Universities