The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SLC26A2  -  solute carrier family 26 (anion exchanger)...

Homo sapiens

Synonyms: D5S1708, DTD, DTDST, Diastrophic dysplasia protein, EDM4, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SLC26A2

  • Identification of sequence polymorphisms in two sulfation-related genes, PAPSS2 and SLC26A2, and an association analysis with knee osteoarthritis [1].
  • Recessively inherited multiple epiphyseal dysplasia with normal stature, club foot, and double layered patella caused by a DTDST mutation [2].
  • Homozygous mutant mice were characterized by growth retardation, skeletal dysplasia and joint contractures, thereby recapitulating essential aspects of the DTD phenotype in man [3].
  • Metabolism of MC by rat and human E. coli DTD was also compared under aerobic and hypoxic conditions [4].
  • In contrast, the toxicity of MC to DTD-deficient BE cells was potentiated markedly under hypoxia [4].
 

High impact information on SLC26A2

 

Chemical compound and disease context of SLC26A2

 

Biological context of SLC26A2

 

Anatomical context of SLC26A2

 

Associations of SLC26A2 with chemical compounds

 

Physical interactions of SLC26A2

 

Other interactions of SLC26A2

 

Analytical, diagnostic and therapeutic context of SLC26A2

  • Abundant SLC26A2 expression has previously been detected in normal human colon by in situ hybridization [14].
  • Direct sequence analysis of genomic DNA demonstrated a homozygous 1984T > A (C653S) change in the DTDST gene in all patients [21].
  • Northern blot analysis suggested that cartilage and intestine were the major expression sites for DTDST mRNA [11].
  • Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production [15].
  • The principle aim of this study was to provide a definitive answer to the question of whether tumor response to MMC could be predicted on the basis of DTD activity in a large panel of human tumor xenografts [22].

References

  1. Identification of sequence polymorphisms in two sulfation-related genes, PAPSS2 and SLC26A2, and an association analysis with knee osteoarthritis. Ikeda, T., Mabuchi, A., Fukuda, A., Hiraoka, H., Kawakami, A., Yamamoto, S., Machida, H., Takatori, Y., Kawaguchi, H., Nakamura, K., Ikegawa, S. J. Hum. Genet. (2001) [Pubmed]
  2. Recessively inherited multiple epiphyseal dysplasia with normal stature, club foot, and double layered patella caused by a DTDST mutation. Superti-Furga, A., Neumann, L., Riebel, T., Eich, G., Steinmann, B., Spranger, J., Kunze, J. J. Med. Genet. (1999) [Pubmed]
  3. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Forlino, A., Piazza, R., Tiveron, C., Della Torre, S., Tatangelo, L., Bonafè, L., Gualeni, B., Romano, A., Pecora, F., Superti-Furga, A., Cetta, G., Rossi, A. Hum. Mol. Genet. (2005) [Pubmed]
  4. Metabolism of bioreductive antitumor compounds by purified rat and human DT-diaphorases. Beall, H.D., Mulcahy, R.T., Siegel, D., Traver, R.D., Gibson, N.W., Ross, D. Cancer Res. (1994) [Pubmed]
  5. Mutations in the region encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal dysplasia. Chapman, K.L., Mortier, G.R., Chapman, K., Loughlin, J., Grant, M.E., Briggs, M.D. Nat. Genet. (2001) [Pubmed]
  6. The Pendred syndrome gene encodes a chloride-iodide transport protein. Scott, D.A., Wang, R., Kreman, T.M., Sheffield, V.C., Karniski, L.P. Nat. Genet. (1999) [Pubmed]
  7. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Hästbacka, J., de la Chapelle, A., Mahtani, M.M., Clines, G., Reeve-Daly, M.P., Daly, M., Hamilton, B.A., Kusumi, K., Trivedi, B., Weaver, A. Cell (1994) [Pubmed]
  8. Quinone toxicity in DT-diaphorase-efficient and -deficient colon carcinoma cell lines. Karczewski, J.M., Peters, J.G., Noordhoek, J. Biochem. Pharmacol. (1999) [Pubmed]
  9. Human DRA functions as a sulfate transporter in Sf9 insect cells. Byeon, M.K., Frankel, A., Papas, T.S., Henderson, K.W., Schweinfest, C.W. Protein Expr. Purif. (1998) [Pubmed]
  10. FISH-mapping of LEP and SLC26A2 genes in sheep, goat and cattle R-banded chromosomes: comparison between bovine, ovine and caprine chromosome 4 (BTA4/OAR4/CHI4) and human chromosome 7 (HSA7). Perucatti, A., Di Meo, G.P., Vallinoto, M., Kierstein, G., Schneider, M.P., Incarnato, D., Caputi Jambrenghi, A., Mohammadi, G., Vonghia, G., Silva, A., Brenig, B., Iannuzzi, L. Cytogenet. Genome Res. (2006) [Pubmed]
  11. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. Satoh, H., Susaki, M., Shukunami, C., Iyama, K., Negoro, T., Hiraki, Y. J. Biol. Chem. (1998) [Pubmed]
  12. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. Toure, A., Morin, L., Pineau, C., Becq, F., Dorseuil, O., Gacon, G. J. Biol. Chem. (2001) [Pubmed]
  13. Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. Vincourt, J.B., Jullien, D., Amalric, F., Girard, J.P. FASEB J. (2003) [Pubmed]
  14. SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. Haila, S., Hästbacka, J., Böhling, T., Karjalainen-Lindsberg, M.L., Kere, J., Saarialho-Kere, U. J. Histochem. Cytochem. (2001) [Pubmed]
  15. Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production. Rossi, A., Kaitila, I., Wilcox, W.R., Rimoin, D.L., Steinmann, B., Cetta, G., Superti-Furga, A. Matrix Biol. (1998) [Pubmed]
  16. In vitro proteoglycan sulfation derived from sulfhydryl compounds in sulfate transporter chondrodysplasias. Rossi, A., Cetta, G., Piazza, R., Bonaventure, J., Steinmann, B., Supereti-Furga, A. Pediatric pathology & molecular medicine. (2003) [Pubmed]
  17. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules. Girard, J.P., Baekkevold, E.S., Feliu, J., Brandtzaeg, P., Amalric, F. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  18. The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, inflammatory colon epithelium, and in some dysplastic colon cells. Haila, S., Saarialho-Kere, U., Karjalainen-Lindsberg, M.L., Lohi, H., Airola, K., Holmberg, C., Hästbacka, J., Kere, J., Höglund, P. Histochem. Cell Biol. (2000) [Pubmed]
  19. A linkage map spanning the locus for diastrophic dysplasia (DTD). Hästbacka, J., Sistonen, P., Kaitila, I., Weiffenbach, B., Kidd, K.K., de la Chapelle, A. Genomics (1991) [Pubmed]
  20. Exclusion of the COL2A1 gene as the mutation site in diastrophic dysplasia. Elima, K., Kaitila, I., Mikonoja, L., Elonsalo, U., Peltonen, L., Vuorio, E. J. Med. Genet. (1989) [Pubmed]
  21. Autosomal recessive multiple epiphyseal dysplasia with homozygosity for C653S in the DTDST gene: double-layer patella as a reliable sign. Mäkitie, O., Savarirayan, R., Bonafé, L., Robertson, S., Susic, M., Superti-Furga, A., Cole, W.G. Am. J. Med. Genet. A (2003) [Pubmed]
  22. Predicting tumor responses to mitomycin C on the basis of DT-diaphorase activity or drug metabolism by tumor homogenates: implications for enzyme-directed bioreductive drug development. Phillips, R.M., Burger, A.M., Loadman, P.M., Jarrett, C.M., Swaine, D.J., Fiebig, H.H. Cancer Res. (2000) [Pubmed]
 
WikiGenes - Universities