The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Cftr  -  cystic fibrosis transmembrane conductance...

Rattus norvegicus

Synonyms: ATP-binding cassette sub-family C member 7, Abcc7, CFTR, Channel conductance-controlling ATPase, Cystic fibrosis transmembrane conductance regulator, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cftr

 

High impact information on Cftr

 

Chemical compound and disease context of Cftr

 

Biological context of Cftr

 

Anatomical context of Cftr

 

Associations of Cftr with chemical compounds

  • Glibenclamide, unlike secretin and forskolin, was able to stimulate secretion in Cftr tm1Unc mice, thus indicating that this secretory mechanism was preserved [18].
  • Upon ovarian hyperstimulation, rats develop OHSS symptoms, with up-regulated CFTR expression and enhanced CFTR channel activity, which can also be mimicked by administration of estrogen, but not progesterone, alone in ovariectomized rats [1].
  • Administration of progesterone that suppresses CFTR expression or antiserum against CFTR to OHSS animals results in alleviation of the symptoms [1].
  • Whether CFTR is present in vesicular compartments within chloride secretory cells in the intestine is unknown and the role of cAMP-dependent vesicle insertion in regulating CFTR and intestinal fluid secretion remains unclear [19].
  • The guanylin/uroguanylin receptor GC-C, cGKII, CFTR, and AE2 were all found in the same segments of the ductal system, where they were confined to the apical membrane of centroacinar cells and proximal duct epithelial cells, a circumstance suggesting that both peptides may act through the ductal lumen [8].
 

Regulatory relationships of Cftr

 

Other interactions of Cftr

 

Analytical, diagnostic and therapeutic context of Cftr

References

  1. Estrogen-induced abnormally high cystic fibrosis transmembrane conductance regulator expression results in ovarian hyperstimulation syndrome. Ajonuma, L.C., Tsang, L.L., Zhang, G.H., Wong, C.H., Lau, M.C., Ho, L.S., Rowlands, D.K., Zhou, C.X., Ng, C.P., Chen, J., Xu, P.H., Zhu, J.X., Chung, Y.W., Chan, H.C. Mol. Endocrinol. (2005) [Pubmed]
  2. Phylogenetic analysis of cystic fibrosis transmembrane conductance regulator gene in mammalian species argues for the development of a rabbit model for cystic fibrosis. Vuillaumier, S., Kaltenboeck, B., Lecointre, G., Lehn, P., Denamur, E. Mol. Biol. Evol. (1997) [Pubmed]
  3. Increased expression of cystic fibrosis transmembrane conductance regulator in rat liver after common bile duct ligation. Shen, H., Fan, Y., Yang, X., Burczynski, F.J., Li, P., Gong, Y. J. Cell. Physiol. (2005) [Pubmed]
  4. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Trezise, A.E., Buchwald, M. Nature (1991) [Pubmed]
  5. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Guzman, R.J., Lemarchand, P., Crystal, R.G., Epstein, S.E., Finkel, T. Circ. Res. (1993) [Pubmed]
  6. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. Köttgen, M., Löffler, T., Jacobi, C., Nitschke, R., Pavenstädt, H., Schreiber, R., Frische, S., Nielsen, S., Leipziger, J. J. Clin. Invest. (2003) [Pubmed]
  7. Regulation of membrane chloride currents in rat bile duct epithelial cells. Fitz, J.G., Basavappa, S., McGill, J., Melhus, O., Cohn, J.A. J. Clin. Invest. (1993) [Pubmed]
  8. The electrolyte/fluid secretion stimulatory peptides guanylin and uroguanylin and their common functional coupling proteins in the rat pancreas: a correlative study of expression and cell-specific localization. Kulaksiz, H., Cetin, Y. Pancreas (2002) [Pubmed]
  9. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Deken, S.L., Beckman, M.L., Boos, L., Quick, M.W. Nat. Neurosci. (2000) [Pubmed]
  10. A molecular mechanism for aberrant CFTR-dependent HCO(3)(-) transport in cystic fibrosis. Ko, S.B., Shcheynikov, N., Choi, J.Y., Luo, X., Ishibashi, K., Thomas, P.J., Kim, J.Y., Kim, K.H., Lee, M.G., Naruse, S., Muallem, S. EMBO J. (2002) [Pubmed]
  11. Membrane-specific regulation of Cl- channels by purinergic receptors in rat submandibular gland acinar and duct cells. Zeng, W., Lee, M.G., Muallem, S. J. Biol. Chem. (1997) [Pubmed]
  12. Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. Galietta, L.J., Springsteel, M.F., Eda, M., Niedzinski, E.J., By, K., Haddadin, M.J., Kurth, M.J., Nantz, M.H., Verkman, A.S. J. Biol. Chem. (2001) [Pubmed]
  13. STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Golin-Bisello, F., Bradbury, N., Ameen, N. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  14. Analysis of the mouse and rat CFTR promoter regions. Denamur, E., Chehab, F.F. Hum. Mol. Genet. (1994) [Pubmed]
  15. Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation. Robert, R., Thoreau, V., Norez, C., Cantereau, A., Kitzis, A., Mettey, Y., Rogier, C., Becq, F. J. Biol. Chem. (2004) [Pubmed]
  16. Evidence of a functional CFTR Cl(-) channel in adult alveolar epithelial cells. Brochiero, E., Dagenais, A., Privé, A., Berthiaume, Y., Grygorczyk, R. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  17. Reciprocal protein kinase A regulatory interactions between cystic fibrosis transmembrane conductance regulator and Na+/H+ exchanger isoform 3 in a renal polarized epithelial cell model. Bagorda, A., Guerra, L., Di Sole, F., Hemle-Kolb, C., Cardone, R.A., Fanelli, T., Reshkin, S.J., Gisler, S.M., Murer, H., Casavola, V. J. Biol. Chem. (2002) [Pubmed]
  18. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism. Spirlì, C., Fiorotto, R., Song, L., Santos-Sacchi, J., Okolicsanyi, L., Masier, S., Rocchi, L., Vairetti, M.P., De Bernard, M., Melero, S., Pozzan, T., Strazzabosco, M. Gastroenterology (2005) [Pubmed]
  19. Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic. Ameen, N.A., van Donselaar, E., Posthuma, G., de Jonge, H., McLaughlin, G., Geuze, H.J., Marino, C., Peters, P.J. Histochem. Cell Biol. (2000) [Pubmed]
  20. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Banales, J.M., Arenas, F., Rodríguez-Ortigosa, C.M., Sáez, E., Uriarte, I., Doctor, R.B., Prieto, J., Medina, J.F. Hepatology (2006) [Pubmed]
  21. Inhibitory regulation of cystic fibrosis transmembrane conductance regulator anion-transporting activities by Shank2. Kim, J.Y., Han, W., Namkung, W., Lee, J.H., Kim, K.H., Shin, H., Kim, E., Lee, M.G. J. Biol. Chem. (2004) [Pubmed]
  22. Colonocyte basolateral membranes contain Escherichia coli heat-stable enterotoxin receptors. Albano, F., Brasitus, T., Mann, E.A., Guarino, A., Giannella, R.A. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  23. An amino acid triplet in the NH2 terminus of rat ROMK1 determines interaction with SUR2B. Dong, K., Xu, J., Vanoye, C.G., Welch, R., MacGregor, G.G., Giebisch, G., Hebert, S.C. J. Biol. Chem. (2001) [Pubmed]
  24. Volume regulation in cortical collecting duct cells: role of AQP2. Ford, P., Rivarola, V., Chara, O., Blot-Chabaud, M., Cluzeaud, F., Farman, N., Parisi, M., Capurro, C. Biol. Cell (2005) [Pubmed]
 
WikiGenes - Universities