The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Clcn1  -  chloride channel, voltage-sensitive 1

Rattus norvegicus

Synonyms: Chloride channel protein 1, Chloride channel protein, skeletal muscle, ClC-1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Clcn1


Psychiatry related information on Clcn1

  • Injection of the GABAA receptor antagonist, bicuculline, or the antagonist of the GABAA chloride channel, picrotoxin, also produced a dose-related elevation in horizontal motor activity [6].

High impact information on Clcn1


Chemical compound and disease context of Clcn1


Biological context of Clcn1


Anatomical context of Clcn1


Associations of Clcn1 with chemical compounds


Physical interactions of Clcn1


Regulatory relationships of Clcn1


Other interactions of Clcn1


Analytical, diagnostic and therapeutic context of Clcn1

  • To investigate the physiological role of a kidney-specific chloride channel (ClC-K1), we sought to determine its exact localization by immunohistochemistry and its functional regulation using Xenopus oocyte expression system [35].
  • Two monoclonal antibodies, bd-17 and bd-24, specific for the beta- and alpha-subunit of the GABAA/benzodiazepine receptor/chloride channel complex, respectively, were used to determine the subcellular distribution of immunoreactivity in the cerebellum by electron microscopy [24].
  • After 3-days HU, Sol muscle immunostaining and RT-PCR experiments revealed no change in MHC protein and mRNA expression, whereas the gCl was already maximally increased, due to a pharmacologically probed, increased activity of ClC-1 channels [37].
  • Northern blot analysis suggested that this effect resulted from an increased ClC-1 chloride channel mRNA level [37].
  • 1. The effects of chloride channel blockers on pressure-induced constriction, K(+)-induced force, and whole-cell calcium channel currents were tested in rat cerebral arteries using isobaric and isometric myography, and patch clamp [38].


  1. A chloride channel widely expressed in epithelial and non-epithelial cells. Thiemann, A., Gründer, S., Pusch, M., Jentsch, T.J. Nature (1992) [Pubmed]
  2. The swelling-activated chloride channel ClC-2, the chloride channel ClC-3, and ClC-5, a chloride channel mutated in kidney stone disease, are expressed in distinct subpopulations of renal epithelial cells. Obermüller, N., Gretz, N., Kriz, W., Reilly, R.F., Witzgall, R. J. Clin. Invest. (1998) [Pubmed]
  3. Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum. Schwartz, R.D., Yu, X., Katzman, M.R., Hayden-Hixson, D.M., Perry, J.M. J. Neurosci. (1995) [Pubmed]
  4. Enhancement of gamma-aminobutyric acid-activated chloride channel currents by lanthanides in rat dorsal root ganglion neurons. Ma, J.Y., Narahashi, T. J. Neurosci. (1993) [Pubmed]
  5. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. Steinmeyer, K., Schwappach, B., Bens, M., Vandewalle, A., Jentsch, T.J. J. Biol. Chem. (1995) [Pubmed]
  6. Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. Austin, M.C., Kalivas, P.W. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  7. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln. Krapivinsky, G.B., Ackerman, M.J., Gordon, E.A., Krapivinsky, L.D., Clapham, D.E. Cell (1994) [Pubmed]
  8. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Gründer, S., Thiemann, A., Pusch, M., Jentsch, T.J. Nature (1992) [Pubmed]
  9. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E.D., Betz, H. Nature (1987) [Pubmed]
  10. GABA-activated chloride channels in secretory nerve endings. Zhang, S.J., Jackson, M.B. Science (1993) [Pubmed]
  11. Dietary glycine prevents peptidoglycan polysaccharide-induced reactive arthritis in the rat: role for glycine-gated chloride channel. Li, X., Bradford, B.U., Wheeler, M.D., Stimpson, S.A., Pink, H.M., Brodie, T.A., Schwab, J.H., Thurman, R.G. Infect. Immun. (2001) [Pubmed]
  12. GTP- and GDP-analogues modulate an inwardly rectifying chloride channel in cultured hippocampal neurons. Mager, R., Ferroni, S., Schubert, P. Neurosci. Lett. (1995) [Pubmed]
  13. Cytoprotection by glycine against hypoxia-induced injury in cultured hepatocytes. Nagatomi, A., Sakaida, I., Matsumura, Y., Okita, K. Liver (1997) [Pubmed]
  14. Actions of pyrethroid insecticides on voltage-gated chloride channels in neuroblastoma cells. Ray, D.E., Sutharsan, S., Forshaw, P.J. Neurotoxicology (1997) [Pubmed]
  15. Regulation of the ClC-2 lung epithelial chloride channel by glycosylation of SP1. Vij, N., Zeitlin, P.L. Am. J. Respir. Cell Mol. Biol. (2006) [Pubmed]
  16. Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: genomic sequence and organization of ClC-2. Chu, S., Zeitlin, P.L. Nucleic Acids Res. (1997) [Pubmed]
  17. pH-dependent interactions of Cd2+ and a carboxylate blocker with the rat C1C-1 chloride channel and its R304E mutant in the Sf-9 insect cell line. Rychkov, G.Y., Astill, D.S., Bennetts, B., Hughes, B.P., Bretag, A.H., Roberts, M.L. J. Physiol. (Lond.) (1997) [Pubmed]
  18. Nephron specific regulation of chloride channel CLC-K2 mRNA in the rat. Vitzthum, H., Castrop, H., Meier-Meitinger, M., Riegger, G.A., Kurtz, A., Krämer, B.K., Wolf, K. Kidney Int. (2002) [Pubmed]
  19. Allergic reactions of rat jejunal mucosa. Ion transport responses to luminal antigen and inflammatory mediators. Crowe, S.E., Sestini, P., Perdue, M.H. Gastroenterology (1990) [Pubmed]
  20. The glutathione precursor L-2-oxothiazolidine-4-carboxylic acid protects against liver injury due to chronic enteral ethanol exposure in the rat. Iimuro, Y., Bradford, B.U., Yamashina, S., Rusyn, I., Nakagami, M., Enomoto, N., Kono, H., Frey, W., Forman, D., Brenner, D., Thurman, R.G. Hepatology (2000) [Pubmed]
  21. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. Wheeler, M., Stachlewitz, R.F., Yamashina, S., Ikejima, K., Morrow, A.L., Thurman, R.G. FASEB J. (2000) [Pubmed]
  22. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. Dehnes, Y., Chaudhry, F.A., Ullensvang, K., Lehre, K.P., Storm-Mathisen, J., Danbolt, N.C. J. Neurosci. (1998) [Pubmed]
  23. Short-chain glucose polymer and anthracene-9-carboxylic acid inhibit water and electrolyte secretion induced by dibutyryl cyclic AMP in the small intestine. Rabbani, G.H., Lu, R.B., Horvath, K., Lebenthal, E. Gastroenterology (1991) [Pubmed]
  24. Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. Somogyi, P., Takagi, H., Richards, J.G., Mohler, H. J. Neurosci. (1989) [Pubmed]
  25. Interaction of non-competitive blockers within the gamma-aminobutyric acid type A chloride channel using chemically reactive probes as chemical sensors for cysteine mutants. Perret, P., Sarda, X., Wolff, M., Wu, T.T., Bushey, D., Goeldner, M. J. Biol. Chem. (1999) [Pubmed]
  26. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries. Matchkov, V.V., Aalkjaer, C., Nilsson, H. J. Gen. Physiol. (2004) [Pubmed]
  27. Comparison of binding at strychnine-sensitive (inhibitory glycine receptor) and strychnine-insensitive (N-methyl-D-aspartate receptor) glycine binding sites. Pullan, L.M., Powel, R.J. Neurosci. Lett. (1992) [Pubmed]
  28. Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells. Li, X., Shimada, K., Showalter, L.A., Weinman, S.A. J. Biol. Chem. (2000) [Pubmed]
  29. Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic. Ameen, N.A., van Donselaar, E., Posthuma, G., de Jonge, H., McLaughlin, G., Geuze, H.J., Marino, C., Peters, P.J. Histochem. Cell Biol. (2000) [Pubmed]
  30. Secretin-regulated chloride channel on the apical plasma membrane of pancreatic duct cells. Gray, M.A., Greenwell, J.R., Argent, B.E. J. Membr. Biol. (1988) [Pubmed]
  31. Action of organophosphates on GABAA receptor and voltage-dependent chloride channels. Gant, D.B., Eldefrawi, M.E., Eldefrawi, A.T. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1987) [Pubmed]
  32. Parallel down-regulation of chloride channel CLC-K1 and barttin mRNA in the thin ascending limb of the rat nephron by furosemide. Wolf, K., Meier-Meitinger, M., Bergler, T., Castrop, H., Vitzthum, H., Riegger, G.A., Kurtz, A., Krämer, B.K. Pflugers Arch. (2003) [Pubmed]
  33. Mrp2 modulates the activity of chloride channels in isolated hepatocytes. Li, X., Weinman, S.A. Hepatology (2002) [Pubmed]
  34. Regulation of cardiac volume-sensitive chloride channel by focal adhesion kinase and Src kinase. Walsh, K.B., Zhang, J. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  35. Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1. Uchida, S., Sasaki, S., Nitta, K., Uchida, K., Horita, S., Nihei, H., Marumo, F. J. Clin. Invest. (1995) [Pubmed]
  36. Expression and functional characterization of CFTR in mast cells. Kulka, M., Gilchrist, M., Duszyk, M., Befus, A.D. J. Leukoc. Biol. (2002) [Pubmed]
  37. Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Pierno, S., Desaphy, J.F., Liantonio, A., De Bellis, M., Bianco, G., De Luca, A., Frigeri, A., Nicchia, G.P., Svelto, M., Léoty, C., George, A.L., Camerino, D.C. Brain (2002) [Pubmed]
  38. Non-specificity of chloride channel blockers in rat cerebral arteries: block of the L-type calcium channel. Doughty, J.M., Miller, A.L., Langton, P.D. J. Physiol. (Lond.) (1998) [Pubmed]
WikiGenes - Universities