The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Brugia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Brugia

  • Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria [1].
  • A cDNA expression library constructed from RNA derived from adult stage Brugia pahangi (mixed sexes) was screened with pooled sera from chronic, amicrofilaremic cases of human lymphatic filariasis from the Indonesian island of Tanjungpinang, where Brugia malayi is endemic [2].
  • A full-length cDNA from the parasitic nematode Brugia pahangi encoding a secreted homolog of glutathione peroxidase in which the codon for the active site selenocysteine is substituted naturally by a cysteine codon has been expressed in Spodoptera frugiperda (insect) cells via Autographa californica nuclear polyhedrosis virus (baculovirus) [3].
  • To initiate studies on the significance of filarial arachidonic acid metabolism in the immunopathogenesis of human filariasis, we evaluated the ability of microfilariae of the human filarial parasite Brugia malayi to take up and incorporate exogenous arachidonate [4].
  • We examined the possibility that chloroquine is interfering with aerobic energy-generating processes in the adult filarial parasites, Brugia pahangi and Onchocerca volvulus [5].
 

High impact information on Brugia

  • Diethylcarbamazine enhances antibody-mediated cellular adherence to Brugia malayi microfilariae [6].
  • In the present study, we injected scid mice with infective larvae of the human filarial parasite Brugia malayi [7].
  • Microfilariae of Brugia malayi utilize exogenous and endogenous arachidonic acid to generate and release two predominant prostanoids, prostacyclin and prostaglandin E2 [8].
  • The role of ICOS in chronic Th2 responses was studied in a nematode model with the filarial parasite, Brugia malayi [9].
  • The mRNAs encoding a 63-kDa antigen in the human parasitic nematode Brugia Malayi contain a spliced leader sequence of 22 nucleotides (nt) that is identical to the trans-spliced leader found on certain actin mRNAs in the distantly related nematode Caenorhabditis elegans [10].
 

Chemical compound and disease context of Brugia

 

Biological context of Brugia

 

Anatomical context of Brugia

  • Infections with the helminth parasite Brugia malayi share many key features with Th2-mediated allergic diseases, including recruitment of eosinophils [21].
  • Here, we show that Bm-CPI-2, a recently discovered cystatin homolog produced by the filarial nematode parasite Brugia malayi (W. F. Gregory et al., submitted), inhibits multiple cysteine protease activities found in the endosomes/lysosomes of human B lymphocyte lines [22].
  • Nitric oxide limits the expansion of antigen-specific T cells in mice infected with the microfilariae of Brugia pahangi [23].
  • We show here that both H-2 and non-H-2 factors determine the ability of mice to generate T- and B-cell responses to the filarial polyprotein allergen (Brugia malayi gp15/400) [24].
  • Regulatory T cells modulate Th2 responses induced by Brugia pahangi third-stage larvae [25].
 

Associations of Brugia with chemical compounds

  • Heterologous expression and enzymatic properties of a selenium-independent glutathione peroxidase from the parasitic nematode Brugia pahangi [3].
  • A proline-rich structural protein of the surface sheath of larval Brugia filarial nematode parasites [16].
  • In this study, we have cloned and produced recombinant, independent phosphoglycerate mutases from C. elegans and the human-parasitic nematode Brugia malayi [26].
  • It has been shown that levamisole has significant activity against microfilariae of Wuchereria bancrofti and Brugia malayi [27].
  • Crystal structure of the complex of brugia malayi cyclophilin and cyclosporin A [28].
 

Gene context of Brugia

  • Infection of IL-4-deficient mice with the parasitic nematode Brugia malayi demonstrates that host resistance is not dependent on a T helper 2-dominated immune response [29].
  • We have investigated the roles of gamma interferon (IFN-gamma) and interleukin-4 (IL-4) in host defense against Brugia malayi [30].
  • C57BL/6, IL-4 gene knockout (IL-4(-/-)), and IFN-gamma(-/-) mice were first immunized with soluble Brugia malayi antigens and then inoculated intravenously with 200,000 live Mf [31].
  • Peripheral blood mononuclear cells from MF individuals (n = 11) were stimulated in vitro with Brugia malayi antigen (BMA) or mycobacterial purified protein derivative (PPD) in the presence of neutralizing anti-IL-10 or isotype control monoclonal antibodies [32].
  • Eosinophils, but not eosinophil peroxidase or major basic protein, are important for host protection in experimental Brugia pahangi infection [33].
 

Analytical, diagnostic and therapeutic context of Brugia

References

  1. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. Taylor, M.J., Cross, H.F., Bilo, K. J. Exp. Med. (2000) [Pubmed]
  2. Heat shock cognate 70 is a prominent immunogen in Brugian filariasis. Selkirk, M.E., Denham, D.A., Partono, F., Maizels, R.M. J. Immunol. (1989) [Pubmed]
  3. Heterologous expression and enzymatic properties of a selenium-independent glutathione peroxidase from the parasitic nematode Brugia pahangi. Tang, L., Gounaris, K., Griffiths, C., Selkirk, M.E. J. Biol. Chem. (1995) [Pubmed]
  4. Incorporation of arachidonic acid by microfilariae of Brugia malayi. Longworth, D.L., Foster, D.W., Dvorak, A.M., Weller, P.F. J. Infect. Dis. (1985) [Pubmed]
  5. Effects of intermediary metabolites and electron transport inhibitors on action of chloroquine on Brugia pahangi and Onchocerca volvulus. VandeWaa, E.A., Williams, J.F., Geary, T.G. Biochem. Pharmacol. (1989) [Pubmed]
  6. Diethylcarbamazine enhances antibody-mediated cellular adherence to Brugia malayi microfilariae. Piessens, W.F., Beldekas, M. Nature (1979) [Pubmed]
  7. The immunodeficient scid mouse as a model for human lymphatic filariasis. Nelson, F.K., Greiner, D.L., Shultz, L.D., Rajan, T.V. J. Exp. Med. (1991) [Pubmed]
  8. Intravascular filarial parasites elaborate cyclooxygenase-derived eicosanoids. Liu, L.X., Serhan, C.N., Weller, P.F. J. Exp. Med. (1990) [Pubmed]
  9. Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection. Loke, P., Zang, X., Hsuan, L., Waitz, R., Locksley, R.M., Allen, J.E., Allison, J.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. A 22-nucleotide spliced leader sequence in the human parasitic nematode Brugia malayi is identical to the trans-spliced leader exon in Caenorhabditis elegans. Takacs, A.M., Denker, J.A., Perrine, K.G., Maroney, P.A., Nilsen, T.W. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  11. Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model. Bajpai, P., Vedi, S., Owais, M., Sharma, S.K., Saxena, P.N., Misra-Bhattacharya, S. Journal of drug targeting. (2005) [Pubmed]
  12. Identification of phosphorylcholine epitope-containing antigens in Brugia malayi and relation of serum epitope levels to infection status of jirds with brugian filariasis. Wenger, J.D., Forsyth, K.P., Kazura, J.W. Am. J. Trop. Med. Hyg. (1988) [Pubmed]
  13. Association of elevated lymph node cell release of histamine and tumor necrosis factor with genetic predisposition to limb edema formation in dogs infected with Brugia pahangi. Orton, S., Weinstock, D., Hammerberg, B. Am. J. Trop. Med. Hyg. (1998) [Pubmed]
  14. Towards a filariasis-free community: evaluation of filariasis control over an eleven year period in Flores, Indonesia. Partono, F., Maizels, R.M., Purnomo, n.u.l.l. Trans. R. Soc. Trop. Med. Hyg. (1989) [Pubmed]
  15. Rapid diagnosis of Brugia malayi and Wuchereria bancrofti filariasis by an acridine orange/microhematocrit tube technique. Long, G.W., Rickman, L.S., Cross, J.H. J. Parasitol. (1990) [Pubmed]
  16. A proline-rich structural protein of the surface sheath of larval Brugia filarial nematode parasites. Selkirk, M.E., Yazdanbakhsh, M., Freedman, D., Blaxter, M.L., Cookson, E., Jenkins, R.E., Williams, S.A. J. Biol. Chem. (1991) [Pubmed]
  17. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. Hakala, B.E., White, C., Recklies, A.D. J. Biol. Chem. (1993) [Pubmed]
  18. Infection outcome and cytokine gene expression in Brugia pahangi- infected gerbils (Meriones unguiculatus) sensitized with Brucella abortus. Chirgwin, S.R., Elzer, P.H., Coleman, S.U., Nowling, J.M., Hagius, S.D., Edmonds, M.D., Klei, T.R. Infect. Immun. (2002) [Pubmed]
  19. Class II major histocompatibility complex molecule expression on murine eosinophils activated in vivo by Brugia malayi. Mawhorter, S.D., Pearlman, E., Kazura, J.W., Boom, W.H. Infect. Immun. (1993) [Pubmed]
  20. APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. Allen, J.E., Lawrence, R.A., Maizels, R.M. Int. Immunol. (1996) [Pubmed]
  21. A Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection. Falcone, F.H., Loke, P., Zang, X., MacDonald, A.S., Maizels, R.M., Allen, J.E. J. Immunol. (2001) [Pubmed]
  22. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Manoury, B., Gregory, W.F., Maizels, R.M., Watts, C. Curr. Biol. (2001) [Pubmed]
  23. Nitric oxide limits the expansion of antigen-specific T cells in mice infected with the microfilariae of Brugia pahangi. O'Connor, R.A., Devaney, E. Infect. Immun. (2002) [Pubmed]
  24. Fine specificity of the genetically controlled immune response to native and recombinant gp15/400 (polyprotein allergen) of Brugia malayi. Allen, J.E., Lawrence, R.A., Maizels, R.M. Infect. Immun. (1995) [Pubmed]
  25. Regulatory T cells modulate Th2 responses induced by Brugia pahangi third-stage larvae. Gillan, V., Devaney, E. Infect. Immun. (2005) [Pubmed]
  26. Cofactor-independent phosphoglycerate mutase has an essential role in Caenorhabditis elegans and is conserved in parasitic nematodes. Zhang, Y., Foster, J.M., Kumar, S., Fougere, M., Carlow, C.K. J. Biol. Chem. (2004) [Pubmed]
  27. Use of levamisole in parasitic infections. Miller, M.J. Drugs (1980) [Pubmed]
  28. Crystal structure of the complex of brugia malayi cyclophilin and cyclosporin A. Ellis, P.J., Carlow, C.K., Ma, D., Kuhn, P. Biochemistry (2000) [Pubmed]
  29. Infection of IL-4-deficient mice with the parasitic nematode Brugia malayi demonstrates that host resistance is not dependent on a T helper 2-dominated immune response. Lawrence, R.A., Allen, J.E., Gregory, W.F., Kopf, M., Maizels, R.M. J. Immunol. (1995) [Pubmed]
  30. Role of gamma interferon and interleukin-4 in host defense against the human filarial parasite Brugia malayi. Babu, S., Ganley, L.M., Klei, T.R., Shultz, L.D., Rajan, T.V. Infect. Immun. (2000) [Pubmed]
  31. Reciprocal immunomodulatory effects of gamma interferon and interleukin-4 on filaria-induced airway hyperresponsiveness. Mehlotra, R.K., Hall, L.R., Haxhiu, M.A., Pearlman, E. Infect. Immun. (2001) [Pubmed]
  32. Regulation of parasite antigen-driven immune responses by interleukin-10 (IL-10) and IL-12 in lymphatic filariasis. Mahanty, S., Ravichandran, M., Raman, U., Jayaraman, K., Kumaraswami, V., Nutman, T.B. Infect. Immun. (1997) [Pubmed]
  33. Eosinophils, but not eosinophil peroxidase or major basic protein, are important for host protection in experimental Brugia pahangi infection. Ramalingam, T., Porte, P., Lee, J., Rajan, T.V. Infect. Immun. (2005) [Pubmed]
  34. Severe reactions to filarial chemotherapy and release of Wolbachia endosymbionts into blood. Cross, H.F., Haarbrink, M., Egerton, G., Yazdanbakhsh, M., Taylor, M.J. Lancet (2001) [Pubmed]
  35. Vaccination with recombinant filarial paramyosin induces partial immunity to Brugia malayi infection in jirds. Li, B.W., Chandrashekar, R., Weil, G.J. J. Immunol. (1993) [Pubmed]
  36. Differential decline in filaria-specific IgG1, IgG4, and IgE antibodies in Brugia malayi-infected patients after diethylcarbamazine chemotherapy. Atmadja, A.K., Atkinson, R., Sartono, E., Partono, F., Yazdanbakhsh, M., Maizels, R.M. J. Infect. Dis. (1995) [Pubmed]
  37. Molecular cloning of a serine proteinase inhibitor from Brugia malayi. Yenbutr, P., Scott, A.L. Infect. Immun. (1995) [Pubmed]
 
WikiGenes - Universities