The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cicatrix, Hypertrophic

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cicatrix, Hypertrophic

 

High impact information on Cicatrix, Hypertrophic

 

Chemical compound and disease context of Cicatrix, Hypertrophic

 

Biological context of Cicatrix, Hypertrophic

 

Anatomical context of Cicatrix, Hypertrophic

 

Gene context of Cicatrix, Hypertrophic

 

Analytical, diagnostic and therapeutic context of Cicatrix, Hypertrophic

  • CONCLUSIONS: Clinical improvement of keloidal and hypertrophic scars after treatment with intralesional corticosteroid alone or combined with 5-FU, 5-FU alone, and PDL seemed comparable, with the exceptions of the incidence of adverse reactions, which were most common with intralesional corticosteroid [29].
  • Analysis of MMP-28 protein secretion, assessed by Western blot and beta-casein zymography in scar conditioned media, revealed that normotrophic scar did not release MMP-28 in any condition while hypertrophic scar released active MMP-28 both in control conditions and after compression [15].
  • The histologic localization of fibronectin (FN) in normal human skin, granulation tissue, hypertrophic scar, mature scar, progressive systemic sclerotic skin, and tissue of other fibrotic disorders was investigated by an indirect immunofluorescence technique using specific antiserum prepared in rabbits against purified human plasma FN [4].
  • CONCLUSION: Concomitant use of the high-energy, pulsed CO2 and PDL laser systems was superior to CO2 laser vaporization alone for revision of nonerythematous hypertrophic scars [30].
  • Three additional hypertrophic scar samples were quantitatively analyzed on Northern blots and showed increases of 246%, 102%, and 250% of the specific messages for pro-alpha 1(I), pro-alpha 1(III), and TGF-beta 1 relative to a normal skin control [31].

References

  1. Pathologic scar formation. Morphologic and biochemical correlates. Knapp, T.R., Daniels, R.J., Kaplan, E.N. Am. J. Pathol. (1977) [Pubmed]
  2. Dermatopontin expression is decreased in hypertrophic scar and systemic sclerosis skin fibroblasts and is regulated by transforming growth factor-beta1, interleukin-4, and matrix collagen. Kuroda, K., Okamoto, O., Shinkai, H. J. Invest. Dermatol. (1999) [Pubmed]
  3. Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Skalli, O., Schürch, W., Seemayer, T., Lagacé, R., Montandon, D., Pittet, B., Gabbiani, G. Lab. Invest. (1989) [Pubmed]
  4. Fibronectin. Localization in normal human skin, granulation tissue, hypertrophic scar, mature scar, progressive systemic sclerotic skin, and other fibrosing dermatoses. Nagata, H., Ueki, H., Moriguchi, T. Archives of dermatology. (1985) [Pubmed]
  5. Steroid-induced 'granulomas' in hypertrophic scar. Bhawan, J. Acta Derm. Venereol. (1983) [Pubmed]
  6. Letter: Polyglycolic-acid sutures and hypertrophic scars. Foster, G.E. Lancet (1975) [Pubmed]
  7. Mechanical forces induce scar remodeling. Study in non-pressure-treated versus pressure-treated hypertrophic scars. Costa, A.M., Peyrol, S., Pôrto, L.C., Comparin, J.P., Foyatier, J.L., Desmoulière, A. Am. J. Pathol. (1999) [Pubmed]
  8. Activated keratinocytes in the epidermis of hypertrophic scars. Machesney, M., Tidman, N., Waseem, A., Kirby, L., Leigh, I. Am. J. Pathol. (1998) [Pubmed]
  9. Tranilast attenuates structural and functional aspects of renal injury in the remnant kidney model. Kelly, D.J., Zhang, Y., Gow, R., Gilbert, R.E. J. Am. Soc. Nephrol. (2004) [Pubmed]
  10. Free radical involvement in hypertrophic scar formation. Wan, K.C., Evans, J.H. Free Radic. Biol. Med. (1999) [Pubmed]
  11. 5-fluorouracil blocks transforming growth factor-beta-induced alpha 2 type I collagen gene (COL1A2) expression in human fibroblasts via c-Jun NH2-terminal kinase/activator protein-1 activation. Wendling, J., Marchand, A., Mauviel, A., Verrecchia, F. Mol. Pharmacol. (2003) [Pubmed]
  12. Studies on human scar tissue proteoglycans. Swann, D.A., Garg, H.G., Jung, W., Hermann, H. J. Invest. Dermatol. (1985) [Pubmed]
  13. Alterations in fibroblast alpha1beta1 integrin collagen receptor expression in keloids and hypertrophic scars. Szulgit, G., Rudolph, R., Wandel, A., Tenenhaus, M., Panos, R., Gardner, H. J. Invest. Dermatol. (2002) [Pubmed]
  14. Gene expression profiles from hypertrophic scar fibroblasts before and after IL-6 stimulation. Dasu, M.R., Hawkins, H.K., Barrow, R.E., Xue, H., Herndon, D.N. J. Pathol. (2004) [Pubmed]
  15. Effect of in vitro mechanical compression on Epilysin (matrix metalloproteinase-28) expression in hypertrophic scars. Renò, F., Sabbatini, M., Stella, M., Magliacani, G., Cannas, M. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. (2005) [Pubmed]
  16. No association found between C3 alleles and scar hypertrophy. Yip, S.P., Lewis, W.H. Burns : journal of the International Society for Burn Injuries. (1993) [Pubmed]
  17. Expression of epidermal growth factor receptor and related phosphorylation proteins in hypertrophic scars and normal skin. Cheng, B., Fu, X., Sun, T., Sun, X., Sheng, Z. Chin. Med. J. (2002) [Pubmed]
  18. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Colwell, A.S., Phan, T.T., Kong, W., Longaker, M.T., Lorenz, P.H. Plast. Reconstr. Surg. (2005) [Pubmed]
  19. CD44 and hyaluronan expression in human cutaneous scar fibroblasts. Messadi, D.V., Bertolami, C.N. Am. J. Pathol. (1993) [Pubmed]
  20. Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. Niessen, F.B., Andriessen, M.P., Schalkwijk, J., Visser, L., Timens, W. J. Pathol. (2001) [Pubmed]
  21. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. Niessen, F.B., Schalkwijk, J., Vos, H., Timens, W. J. Pathol. (2004) [Pubmed]
  22. A TGF-beta1-dependent autocrine loop regulates the structure of focal adhesions in hypertrophic scar fibroblasts. Dabiri, G., Campaner, A., Morgan, J.R., Van De Water, L. J. Invest. Dermatol. (2006) [Pubmed]
  23. Chemokine and chemokine receptor expression in keloid and normal fibroblasts. Nirodi, C.S., Devalaraja, R., Nanney, L.B., Arrindell, S., Russell, S., Trupin, J., Richmond, A. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. (2000) [Pubmed]
  24. Expression and role of IL-15 in post-burn hypertrophic scars. Castagnoli, C., Trombotto, C., Ariotti, S., Millesimo, M., Ravarino, D., Magliacani, G., Ponzi, A.N., Stella, M., Teich-Alasia, S., Novelli, F., Musso, T. J. Invest. Dermatol. (1999) [Pubmed]
  25. Nitric oxide synthase expression and nitric oxide production are reduced in hypertrophic scar tissue and fibroblasts. Wang, R., Ghahary, A., Shen, Y.J., Scott, P.G., Tredget, E.E. J. Invest. Dermatol. (1997) [Pubmed]
  26. TNF production and hypertrophic scarring. Castagnoli, C., Stella, M., Berthod, C., Magliacani, G., Richiardi, P.M. Cell. Immunol. (1993) [Pubmed]
  27. Delayed appearance of decorin in healing burn scars. Sayani, K., Dodd, C.M., Nedelec, B., Shen, Y.J., Ghahary, A., Tredget, E.E., Scott, P.G. Histopathology (2000) [Pubmed]
  28. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Scott, P.G., Dodd, C.M., Tredget, E.E., Ghahary, A., Rahemtulla, F. Histopathology (1995) [Pubmed]
  29. Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585-nm flashlamp-pumped pulsed-dye laser treatments. Manuskiatti, W., Fitzpatrick, R.E. Archives of dermatology. (2002) [Pubmed]
  30. Laser scar revision: comparison of CO2 laser vaporization with and without simultaneous pulsed dye laser treatment. Alster, T.S., Lewis, A.B., Rosenbach, A. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.]. (1998) [Pubmed]
  31. Enhanced expression of mRNA for transforming growth factor-beta, type I and type III procollagen in human post-burn hypertrophic scar tissues. Ghahary, A., Shen, Y.J., Scott, P.G., Gong, Y., Tredget, E.E. J. Lab. Clin. Med. (1993) [Pubmed]
 
WikiGenes - Universities