The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Citrullus


High impact information on Citrullus

  • Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha [6].
  • Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon [7].
  • A multi-enzyme complex was formed from recombinant proteins of SATase and cysteine synthase (O-acetylserine(thiol)-lyase) from watermelon, suggesting efficient metabolic channeling from serine to cysteine, preventing the diffusion of intermediary O-acetyl-L-serine [7].
  • METHODS: Melon, zucchini, cucumber, and watermelon allergens were identified by means of IgE immunoblotting of sera from 21 patients with OAS after melon ingestion confirmed by means of double-blind, placebo-controlled food challenge [8].
  • In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds [9].

Biological context of Citrullus

  • There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs [10].
  • The genomic clones of Sat gene encoding serine acetyltransferase (SATase), a key enzyme in cysteine biosynthesis in plants, were isolated from the genomic library of Citrullus vulgaris (watermelon) [11].
  • Despite carrying out C3 photosynthesis, wild watermelon (Citrullus lanatus sp.) exhibits exceedingly good tolerance to severe drought at high light intensities [12].
  • In summary, three different amino acid residues have been modified in the active site domain of watermelon isocitrate lyase [13].
  • PCR primer pairs flanking seven SSR loci were used to amplify SSRs from 32 morphologically variable watermelon genotypes from Africa, Europe, Asia, and Mexico and a single accession of Citrullus colocynthis from Chad [14].

Anatomical context of Citrullus


Associations of Citrullus with chemical compounds


Gene context of Citrullus


Analytical, diagnostic and therapeutic context of Citrullus


  1. The efficacy of octreotide therapy in chronic bleeding due to vascular abnormalities of the gastrointestinal tract. Nardone, G., Rocco, A., Balzano, T., Budillon, G. Aliment. Pharmacol. Ther. (1999) [Pubmed]
  2. Mouse RNA helicase II/Gu: cDNA and genomic sequences, chromosomal localization, and regulation of expression. Valdez, B.C., Wang, W. Genomics (2000) [Pubmed]
  3. Molecular cloning of a cysteine synthase cDNA from Citrullus vulgaris (watermelon) by genetic complementation in an Escherichia coli Cys- auxotroph. Noji, M., Murakoshi, I., Saito, K. Mol. Gen. Genet. (1994) [Pubmed]
  4. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector in squash. Chen, T.C., Hsu, H.T., Jain, R.K., Huang, C.W., Lin, C.H., Liu, F.L., Yeh, S.D. J. Virol. Methods (2005) [Pubmed]
  5. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats. Hayashi, K., Hara, H., Asvarujanon, P., Aoyama, Y., Luangpituksa, P. Br. J. Nutr. (2001) [Pubmed]
  6. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Gietl, C., Faber, K.N., van der Klei, I.J., Veenhuis, M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. Saito, K., Yokoyama, H., Noji, M., Murakoshi, I. J. Biol. Chem. (1995) [Pubmed]
  8. Profilin is a relevant melon allergen susceptible to pepsin digestion in patients with oral allergy syndrome. Rodriguez-Perez, R., Crespo, J.F., Rodríguez, J., Salcedo, G. J. Allergy Clin. Immunol. (2003) [Pubmed]
  9. Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon. Kang, H.G., Jun, S.H., Kim, J., Kawaide, H., Kamiya, Y., An, G. Plant Physiol. (1999) [Pubmed]
  10. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Lilly, J.W., Havey, M.J. Genetics (2001) [Pubmed]
  11. Genomic structure and expression analyses of serine acetyltransferase gene in Citrullus vulgaris (watermelon). Saito, K., Inoue, K., Fukushima, R., Noji, M. Gene (1997) [Pubmed]
  12. Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions. Nanasato, Y., Akashi, K., Yokota, A. Plant Cell Physiol. (2005) [Pubmed]
  13. Modification of the active site of isocitrate lyase from watermelon cotyledons. Jameel, S., El-Gul, T., McFadden, B.A. Arch. Biochem. Biophys. (1985) [Pubmed]
  14. Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Jarret, R.L., Merrick, L.C., Holms, T., Evans, J., Aradhya, M.K. Genome (1997) [Pubmed]
  15. Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin. Kato, A., Hayashi, M., Mori, H., Nishimura, M. Plant Mol. Biol. (1995) [Pubmed]
  16. In vivo uptake of mitochondrial malate dehydrogenase from watermelon by mitochondria of Xenopus laevis oocytes. Sautter, C. Eur. J. Cell Biol. (1986) [Pubmed]
  17. Production of an anti-allergic triterpene bryonolic acid, by plant cell cultures. Tabata, M., Tanaka, S., Cho, H.J., Uno, C., Shimakura, J., Ito, M., Kamisako, W., Honda, C. J. Nat. Prod. (1993) [Pubmed]
  18. Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Gietl, C. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  19. Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons. Bueno, P., Varela, J., Gimeénez-Gallego, G., del Río, L.A. Plant Physiol. (1995) [Pubmed]
  20. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Akashi, K., Miyake, C., Yokota, A. FEBS Lett. (2001) [Pubmed]
  21. Consumption of watermelon juice increases plasma concentrations of lycopene and beta-carotene in humans. Edwards, A.J., Vinyard, B.T., Wiley, E.R., Brown, E.D., Collins, J.K., Perkins-Veazie, P., Baker, R.A., Clevidence, B.A. J. Nutr. (2003) [Pubmed]
  22. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Ellul, P., Ríos, G., Atarés, A., Roig, L.A., Serrano, R., Moreno, V. Theor. Appl. Genet. (2003) [Pubmed]
  23. The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Wimmer, C., Schmid, M., Veenhuis, M., Gietl, C. Plant J. (1998) [Pubmed]
  24. Organization of repetitive DNAs and the genomic regions carrying ribosomal RNA, cob, and atp9 genes in the cucurbit mitochondrial genomes. Bartoszewski, G., Katzir, N., Havey, M.J. Theor. Appl. Genet. (2004) [Pubmed]
  25. Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Noji, M., Saito, K. Amino Acids (2002) [Pubmed]
  26. Immunodiagnosis of groundnut and watermelon bud necrosis viruses using polyclonal antiserum to recombinant nucleocapsid protein of Groundnut bud necrosis virus. Jain, R.K., Pandey, A.N., Krishnareddy, M., Mandal, B. J. Virol. Methods (2005) [Pubmed]
  27. Rapid high-performance liquid chromatography method to quantitate elaterinide in juice and reconstituted residues from a bitter mutant of hawkesbury watermelon. Matsuo, K., DeMilo, A.B., Schroder, R.F., Martin, P.A. J. Agric. Food Chem. (1999) [Pubmed]
  28. The watermelon stomach: successful treatment by monopolar electrocoagulation and endoscopic injection of polidocanol. Cugia, L., Carta, M., Dore, M.P., Realdi, G., Massarelli, G. J. Clin. Gastroenterol. (2000) [Pubmed]
  29. Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Yokota, A., Kawasaki, S., Iwano, M., Nakamura, C., Miyake, C., Akashi, K. Ann. Bot. (2002) [Pubmed]
  30. Bioassays for detection of aldicarb in watermelon. Wilson, B.W., Seiber, J.N., Stelljes, M.E., Henderson, J.D., Archer, T.E., Pollock, G.A., Knaak, J.B. Bulletin of environmental contamination and toxicology. (1989) [Pubmed]
WikiGenes - Universities