The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Mercury II     mercury(+2) cation

Synonyms: Mercuric ion, mercury ion, mercury(2+), mercury (II), Mercury (2+), ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mercury II

 

High impact information on Mercury II

  • We demonstrate here one such mechanism that employs a single heavy metal receptor protein, MerR, to directly activate transcription of the bacterial mercuric ion resistance operon [6].
  • Upon mercuric ion binding, Hg-MerR converts this polymerase complex into the transcriptionally active or 'open' form [7].
  • Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes [1].
  • Copper-induced conformational changes in the essential C-terminal peptide of hCCS are consistent with a "pivot, insert, and release" mechanism that is similar to one proposed for the well characterized metal handling enzyme, mercuric ion reductase [8].
  • In this study, MerC from the Tn21-encoded mer operon was overexpressed and studied in vesicles and in purified form to clarify the role played by this protein in mercuric ion resistance [9].
 

Chemical compound and disease context of Mercury II

  • Protein molecules extracted directly from unseeded freshwater and samples seeded with Pseudomonas aeruginosa PU21 (Rip64) were quantitatively assayed for mercuric reductase activity in microtiter plates by stoichiometric coupling of mercuric ion reduction to a colorimetric redox chain through NADPH oxidation [10].
  • Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+) [11].
  • Anomalous difference Fouriers were again used, revealing that Hg(2+) had substituted for the same Zn(2+) cofactor ion as had Pb(2+), a finding of fundamental importance for the understanding of mercury poisoning [12].
  • Male Wistar rats were separated into 8 groups and each was treated with one of following compounds, mercury II chloride (HgCl(2)), 2-bromoethanamine hydrobromide (BEA), carbon tetrachloride (CCl(4)), alpha-naphthylisothiocyanate (ANIT), and three doses of Ce(NO(3))(3) (i.p. 2, 10 and 50mg/kg body weight) [13].
  • In the BrdU test, a significantly (P<0.05) decreased toxicity was observed for Hg(2+) at 48 h, compared to the 24 h Hg(2+)-exposure [14].
 

Biological context of Mercury II

 

Anatomical context of Mercury II

  • Hydroxylamine, but not mercuric ion releases [32P]ADP-ribose, whereas phosphodiesterase releases [32P]AMP from the particulate subcellular fraction, suggesting that labeling is a result of enzymatic mono-ADP-ribosylation of arginines [20].
  • The 116-amino-acid MerT protein is sufficient for mercuric ion transport across the cytoplasmic membrane [21].
  • It was found that the divalent cations Mn(2+) and Hg(2+) were able to induce in vitro the activation of beta1 integrins on rat lymphocytes [3].
  • Mutated proteins were expressed in COS cells and probed with Hg(2+), [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), and biotin-maleimide, applied to the extracellular media while placing the cells in two different media (K-medium and Na-medium) [22].
  • Y401C+E758C rat skeletal muscle Na(+) channels (mu1) that form a disulfide bond spontaneously between two cysteines at the 401 and 758 positions showed a significantly lower sensitivity to Hg(2+) (K(d) = 18 microM) [23].
 

Associations of Mercury II with other chemical compounds

 

Gene context of Mercury II

  • Furthermore, apical, but not basolateral, application of Hg(2+) significantly reduces the transepithelial osmotic permeability, suggesting that apical AQP1 and AQP5 may contribute significantly to fluid secretion [29].
  • The passive water permeability ( L(p)) of AQP6 is activated by Hg(2+) [30].
  • CONCLUSIONS: These observations are consistent with the hypothesis that JNK is one of the signaling proteins mediating the effect of Hg(2+) on IL-4 expression in mast cells and is engaged in environmentally mediated immunomodulation [31].
  • A small region of merR corresponding to residues 81-92 also was mutagenized in a search for other RD mutants and for mutants displaying sufficient transcriptional activation in the absence of mercuric ion to be classified as constitutive activation (CA) mutants [32].
  • CONCLUSION: These data represent ostensibly the most direct line of evidence implicating a specific membrane protein (i.e., hOAT1) in the transport of a biologically relevant molecular species of Hg(2+) in a mammalian cell [33].
 

Analytical, diagnostic and therapeutic context of Mercury II

References

  1. Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Misra, T.K., Brown, N.L., Fritzinger, D.C., Pridmore, R.D., Barnes, W.M., Haberstroh, L., Silver, S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  2. Nitric oxide-independent, thiol-associated ADP-ribosylation inactivates aldehyde dehydrogenase. McDonald, L.J., Moss, J. J. Biol. Chem. (1993) [Pubmed]
  3. Functional relevance of activated beta1 integrins in mercury-induced nephritis. Escudero, E., Martín, A., Nieto, M., Nieto, E., Navarro, E., Luque, A., Cabañas, C., Sánchez-Madrid, F., Mampaso, F. J. Am. Soc. Nephrol. (2000) [Pubmed]
  4. Effect of mercury on selenium utilization and selenoperoxidase activity in LNCaP cells. Bulato, C., Bosello, V., Ursini, F., Maiorino, M. Free Radic. Biol. Med. (2007) [Pubmed]
  5. Incidence of antibiotic-resistant Escherichia coli associated with frozen chicken carcasses and characterization of conjugative R plasmids derived from such strains. Caudry, S.D., Stanisich, V.A. Antimicrob. Agents Chemother. (1979) [Pubmed]
  6. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. O'Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M., Wright, J.G. Cell (1989) [Pubmed]
  7. DNA-bend modulation in a repressor-to-activator switching mechanism. Ansari, A.Z., Bradner, J.E., O'Halloran, T.V. Nature (1995) [Pubmed]
  8. Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS. Rae, T.D., Torres, A.S., Pufahl, R.A., O'Halloran, T.V. J. Biol. Chem. (2001) [Pubmed]
  9. A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistance. Sahlman, L., Wong, W., Powlowski, J. J. Biol. Chem. (1997) [Pubmed]
  10. Protein method for investigating mercuric reductase gene expression in aquatic environments. Ogunseitan, O.A. Appl. Environ. Microbiol. (1998) [Pubmed]
  11. Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans. Iwahori, K., Takeuchi, F., Kamimura, K., Sugio, T. Appl. Environ. Microbiol. (2000) [Pubmed]
  12. MAD analyses of yeast 5-aminolaevulinate dehydratase: their use in structure determination and in defining the metal-binding sites. Erskine, P.T., Duke, E.M., Tickle, I.J., Senior, N.M., Warren, M.J., Cooper, J.B. Acta Crystallogr. D Biol. Crystallogr. (2000) [Pubmed]
  13. NMR spectroscopic-based metabonomic investigation on the acute biochemical effects induced by Ce(NO3)3 in rats. Wu, H., Zhang, X., Liao, P., Li, Z., Li, W., Li, X., Wu, Y., Pei, F. J. Inorg. Biochem. (2005) [Pubmed]
  14. Cytotoxicity of dental composite (co)monomers and the amalgam component Hg(2+) in human gingival fibroblasts. Reichl, F.X., Simon, S., Esters, M., Seiss, M., Kehe, K., Kleinsasser, N., Hickel, R. Arch. Toxicol. (2006) [Pubmed]
  15. Dimerization of the trinuclear mercury(II) complex [(o-C(6)F(4)Hg)(3)*mu(3)-acetone] via mercurophilic interactions. King, J.B., Haneline, M.R., Tsunoda, M., Gabbaï, F.P. J. Am. Chem. Soc. (2002) [Pubmed]
  16. Crystal structure of a prostate kallikrein isolated from stallion seminal plasma: a homologue of human PSA. Carvalho, A.L., Sanz, L., Barettino, D., Romero, A., Calvete, J.J., Romão, M.J. J. Mol. Biol. (2002) [Pubmed]
  17. Comparison of sympathetic modulation induced by single oral doses of mibefradil, amlodipine, and nifedipine in healthy volunteers. Ragueneau, I., Sao, A.B., Démolis, J.L., Darné, B., Funck-Brentano, C., Jaillon, P. Clin. Pharmacol. Ther. (2001) [Pubmed]
  18. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays. Cantoni, O., Costa, M. Mol. Pharmacol. (1983) [Pubmed]
  19. In vivo effects of mercury (II) on deoxyuridine triphosphate nucleotidohydrolase, DNA polymerase (alpha, beta), and uracil-DNA glycosylase activities in cultured human cells: relationship to DNA damage, DNA repair, and cytotoxicity. Williams, M.V., Winters, T., Waddell, K.S. Mol. Pharmacol. (1987) [Pubmed]
  20. Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyltransferase. Wang, J., Nemoto, E., Kots, A.Y., Kaslow, H.R., Dennert, G. J. Immunol. (1994) [Pubmed]
  21. The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Morby, A.P., Hobman, J.L., Brown, N.L. Mol. Microbiol. (1995) [Pubmed]
  22. Catalytic phosphorylation of Na,K-ATPase drives the outward movement of its cation-binding H5-H6 hairpin. Mikhailova, L., Mandal, A.K., Argüello, J.M. Biochemistry (2002) [Pubmed]
  23. Block of sodium channels by divalent mercury: role of specific cysteinyl residues in the P-loop region. Hisatome, I., Kurata, Y., Sasaki, N., Morisaki, T., Morisaki, H., Tanaka, Y., Urashima, T., Yatsuhashi, T., Tsuboi, M., Kitamura, F., Miake, J., Takeda, S., Taniguchi, S., Ogino, K., Igawa, O., Yoshida, A., Sato, R., Makita, N., Shigemasa, C. Biophys. J. (2000) [Pubmed]
  24. Characterization of the covalent mercury (II)-NADPH complex. Marshall, J.L., Booth, J.E., Williams, J.W. J. Biol. Chem. (1984) [Pubmed]
  25. Effects of surfactants on cobalamin dependent methyl transfer. Influence of aqueous and reversed micelles on the interaction of mercuric ion with methylcobalamin. Robinson, G.C., Nome, F., Fendler, J.H. J. Am. Chem. Soc. (1977) [Pubmed]
  26. Design of an Emission Ratiometric Biosensor from MerR Family Proteins: A Sensitive and Selective Sensor for Hg(2+). Wegner, S.V., Okesli, A., Chen, P., He, C. J. Am. Chem. Soc. (2007) [Pubmed]
  27. Mutagenesis of the N- and C-terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials. Moore, M.J., Walsh, C.T. Biochemistry (1989) [Pubmed]
  28. Heavy-Metal-Ion Capture, Ion-Exchange, and Exceptional Acid Stability of the Open-Framework Chalcogenide (NH(4))(4)In(12)Se(20). Manos, M.J., Malliakas, C.D., Kanatzidis, M.G. Chemistry (Weinheim an der Bergstrasse, Germany) (2007) [Pubmed]
  29. The role of aquaporin water channels in fluid secretion by the exocrine pancreas. Burghardt, B., Nielsen, S., Steward, M.C. J. Membr. Biol. (2006) [Pubmed]
  30. Aquaporin 6 is permeable to glycerol and urea. Holm, L.M., Klaerke, D.A., Zeuthen, T. Pflugers Arch. (2004) [Pubmed]
  31. c-Jun N-terminal kinase is involved in mercuric ions-mediated interleukin-4 secretion in mast cells. Walczak-Drzewiecka, A., Wyczółkowska, J., Dastych, J. Int. Arch. Allergy Immunol. (2005) [Pubmed]
  32. Construction of a synthetic gene for the metalloregulatory protein MerR and analysis of regionally mutated proteins for transcriptional regulation. Comess, K.M., Shewchuk, L.M., Ivanetich, K., Walsh, C.T. Biochemistry (1994) [Pubmed]
  33. Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Zalups, R.K., Aslamkhan, A.G., Ahmad, S. Kidney Int. (2004) [Pubmed]
  34. Mechanism of mercury(II) reductase and influence of ligation on the reduction of mercury(II) by a water soluble 1,5-dihydroflavin. Gopinath, E., Kaaret, T.W., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  35. Purification, crystallization, and preliminary x-ray diffraction studies of the flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607. Moore, M.J., Distefano, M.D., Walsh, C.T., Schiering, N., Pai, E.F. J. Biol. Chem. (1989) [Pubmed]
  36. Thermal difference circular dichroism of Pf1 filamentous virus and effects of mercury(II), silver(I), and copper(II). Casadevall, A., Day, L.A. Biochemistry (1988) [Pubmed]
  37. Cobalt(2+) binding to human and tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. Zhu, H., Shipp, E., Sanchez, R.J., Liba, A., Stine, J.E., Hart, P.J., Gralla, E.B., Nersissian, A.M., Valentine, J.S. Biochemistry (2000) [Pubmed]
 
WikiGenes - Universities