The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Spinal Dysraphism

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Spinal Dysraphism

 

Psychiatry related information on Spinal Dysraphism

 

High impact information on Spinal Dysraphism

 

Chemical compound and disease context of Spinal Dysraphism

 

Biological context of Spinal Dysraphism

 

Anatomical context of Spinal Dysraphism

 

Gene context of Spinal Dysraphism

 

Analytical, diagnostic and therapeutic context of Spinal Dysraphism

References

  1. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Hildebrand, J.D., Soriano, P. Cell (1999) [Pubmed]
  2. Clomiphene, anencephaly, and spina bifida. James, W.H. Lancet (1977) [Pubmed]
  3. Valproate, spina bifida, and birth defect registries. Staunton, H. Lancet (1989) [Pubmed]
  4. Retinoic acid-induced spina bifida: evidence for a pathogenetic mechanism. Alles, A.J., Sulik, K.K. Development (1990) [Pubmed]
  5. Characterization of a major latex allergen associated with hypersensitivity in spina bifida patients. Lu, L.J., Kurup, V.P., Hoffman, D.R., Kelly, K.J., Murali, P.S., Fink, J.N. J. Immunol. (1995) [Pubmed]
  6. Erectile dysfunction in patients with spina bifida is a treatable condition. Palmer, J.S., Kaplan, W.E., Firlit, C.F. J. Urol. (2000) [Pubmed]
  7. New animal model for the study of neural tube defects. Michejda, M., McCollough, D. Zeitschrift für Kinderchirurgie : organ der Deutschen, der Schweizerischen und der Osterreichischen Gesellschaft für Kinderchirurgie = Surgery in infancy and childhood. (1987) [Pubmed]
  8. Prevalence of spina bifida at birth--United States, 1983-1990: a comparison of two surveillance systems. Lary, J.M., Edmonds, L.D. MMWR. CDC surveillance summaries : Morbidity and mortality weekly report. CDC surveillance summaries / Centers for Disease Control. (1996) [Pubmed]
  9. Burn injury in patients with early-onset neurological impairments: 2002 ABA paper. Alden, N.E., Rabbitts, A., Rolls, J.A., Bessey, P.Q., Yurt, R.W. The Journal of burn care & rehabilitation. (2004) [Pubmed]
  10. Family resources as resistance factors for psychological maladjustment in chronically ill and handicapped children. Wallander, J.L., Varni, J.W., Babani, L., Banis, H.T., Wilcox, K.T. Journal of pediatric psychology. (1989) [Pubmed]
  11. Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Niederreither, K., Abu-Abed, S., Schuhbaur, B., Petkovich, M., Chambon, P., Dollé, P. Nat. Genet. (2002) [Pubmed]
  12. Interaction between undulated and Patch leads to an extreme form of spina bifida in double-mutant mice. Helwig, U., Imai, K., Schmahl, W., Thomas, B.E., Varnum, D.S., Nadeau, J.H., Balling, R. Nat. Genet. (1995) [Pubmed]
  13. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Ting, S.B., Wilanowski, T., Auden, A., Hall, M., Voss, A.K., Thomas, T., Parekh, V., Cunningham, J.M., Jane, S.M. Nat. Med. (2003) [Pubmed]
  14. Spina bifida: MRC folate trials to start at last. Beardsley, T. Nature (1983) [Pubmed]
  15. Folic acid and prevention of spina bifida. Klein, N.W. JAMA (1996) [Pubmed]
  16. Spina bifida and in-utero exposure to valproate. Lindhout, D., Meinardi, H. Lancet (1984) [Pubmed]
  17. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Doolin, M.T., Barbaux, S., McDonnell, M., Hoess, K., Whitehead, A.S., Mitchell, L.E. Am. J. Hum. Genet. (2002) [Pubmed]
  18. Developing with lethal RA levels: genetic ablation of Rarg can restore the viability of mice lacking Cyp26a1. Abu-Abed, S., Dollé, P., Metzger, D., Wood, C., MacLean, G., Chambon, P., Petkovich, M. Development (2003) [Pubmed]
  19. Identification, cloning, and sequence of a major allergen (Hev b 5) from natural rubber latex (Hevea brasiliensis). Slater, J.E., Vedvick, T., Arthur-Smith, A., Trybul, D.E., Kekwick, R.G. J. Biol. Chem. (1996) [Pubmed]
  20. Pathogenesis of trypan-blue-induced spina bifida. Rokos, J., Cekanova, E., Kithierova, E. J. Pathol. (1976) [Pubmed]
  21. Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Chi, H., Sarkisian, M.R., Rakic, P., Flavell, R.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. A genetic risk factor for mouse neural tube defects: defining the embryonic basis. Fleming, A., Copp, A.J. Hum. Mol. Genet. (2000) [Pubmed]
  23. PAX genes and human neural tube defects: an amino acid substitution in PAX1 in a patient with spina bifida. Hol, F.A., Geurds, M.P., Chatkupt, S., Shugart, Y.Y., Balling, R., Schrander-Stumpel, C.T., Johnson, W.G., Hamel, B.C., Mariman, E.C. J. Med. Genet. (1996) [Pubmed]
  24. Re: "Maternal vitamin use, genetic variation of infant methylenetetrahydrofolate reductase, and risk for spina bifida". Botto, L.D., Mulinare, J. Am. J. Epidemiol. (1999) [Pubmed]
  25. Characterization of T cell responses to Hev b 3, an allergen associated with latex allergy in spina bifida patients. Bohle, B., Wagner, B., Vollmann, U., Buck, D., Niggemann, B., Szépfalusi, Z., Fischer, G., Scheiner, O., Breiteneder, H., Ebner, C. J. Immunol. (2000) [Pubmed]
  26. Does lumbosacral spina bifida arise by failure of neural folding or by defective canalisation? Copp, A.J., Brook, F.A. J. Med. Genet. (1989) [Pubmed]
  27. Patterns of neuronal differentiation in neural tube mutant mice: curly tail and Pax3 splotch-delayed. Keller-Peck, C.R., Mullen, R.J. J. Comp. Neurol. (1996) [Pubmed]
  28. Preexisting neurogenic voiding dysfunction in children with imperforate anus: problems in management. Kakizaki, H., Nonomura, K., Asano, Y., Shinno, Y., Ameda, K., Koyanagi, T. J. Urol. (1994) [Pubmed]
  29. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Lakkis, M.M., Golden, J.A., O'Shea, K.S., Epstein, J.A. Dev. Biol. (1999) [Pubmed]
  30. Evaluation of genetic variants in the reduced folate carrier and in glutamate carboxypeptidase II for spina bifida risk. Morin, I., Devlin, A.M., Leclerc, D., Sabbaghian, N., Halsted, C.H., Finnell, R., Rozen, R. Mol. Genet. Metab. (2003) [Pubmed]
  31. Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans. Guéant-Rodriguez, R.M., Rendeli, C., Namour, B., Venuti, L., Romano, A., Anello, G., Bosco, P., Debard, R., Gérard, P., Viola, M., Salvaggio, E., Guéant, J.L. Neurosci. Lett. (2003) [Pubmed]
  32. Microsatellites proximal to leptin and leptin receptor as risk factors for spina bifida. Shaw, G.M., Barber, R., Todoroff, K., Lammer, E.J., Finnell, R.H. Teratology (2000) [Pubmed]
  33. Disruption of PDGFRalpha-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Pickett, E.A., Olsen, G.S., Tallquist, M.D. Development (2008) [Pubmed]
  34. A cluster of anaphylactic reactions in children with spina bifida during general anesthesia: epidemiologic features, risk factors, and latex hypersensitivity. Kelly, K.J., Pearson, M.L., Kurup, V.P., Havens, P.L., Byrd, R.S., Setlock, M.A., Butler, J.C., Slater, J.E., Grammer, L.C., Resnick, A. J. Allergy Clin. Immunol. (1994) [Pubmed]
  35. Teratogenic effects of valproate in the CD-1 mouse fetus. Paulson, R.B., Sucheston, M.E., Hayes, T.G., Paulson, G.W. Arch. Neurol. (1985) [Pubmed]
  36. Association between latex sensitization and repeated latex exposure in children. Porri, F., Pradal, M., Lemière, C., Birnbaum, J., Mege, J.L., Lanteaume, A., Charpin, D., Vervloet, D., Camboulives, J. Anesthesiology (1997) [Pubmed]
  37. Prohevein from the rubber tree (Hevea brasiliensis) is a major latex allergen. Alenius, H., Kalkkinen, N., Lukka, M., Reunala, T., Turjanmaa, K., Mäkinen-Kiljunen, S., Yip, E., Palosuo, T. Clin. Exp. Allergy (1995) [Pubmed]
  38. Detection of immunoglobulin antibodies in the sera of patients using purified latex allergens. Kurup, V.P., Yeang, H.Y., Sussman, G.L., Bansal, N.K., Beezhold, D.H., Kelly, K.J., Hoffman, D.R., Williams, B., Fink, J.N. Clin. Exp. Allergy (2000) [Pubmed]
 
WikiGenes - Universities