The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

methoxyessigs     2-methoxyethanoic acid

Synonyms: NSC-7300, CCRIS 6518, AG-C-95034, CHEMBL1697714, ACMC-209n4u, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC 7300

  • Since methoxyacetic acid has been shown to have the same spectrum of toxicity as EGME in male rats, the observed differences in the toxicological properties of EGME and PGME are thought to be due to the fact that the two materials are biotransformed via different routes to different types of metabolites [1].
  • Flow cytometric (FCM) DNA content measurements were carried out on testicular monocellular suspensions obtained from mice exposed per os to a single dose of 50, 100, 300, 600, and 900 mg/kg body weight (b.w.) of 2-methoxyacetic acid (MAA) in order to investigate its cytotoxic action on germ cells [2].
  • The hematopoietic toxicity of ethylene glycol monomethyl ether (EGME) and its metabolites, methoxy acetaldehyde (MALD) and methoxyacetic acid (MAA), was analyzed using human bone marrow cells from a lymphoma patient without bone marrow involvement and a human leukemia cell line, HL60 [3].
 

High impact information on NSC 7300

 

Chemical compound and disease context of NSC 7300

 

Biological context of NSC 7300

 

Anatomical context of NSC 7300

 

Associations of NSC 7300 with other chemical compounds

 

Gene context of NSC 7300

 

Analytical, diagnostic and therapeutic context of NSC 7300

References

  1. Ethylene glycol monomethyl ether and propylene glycol monomethyl ether: metabolism, disposition, and subchronic inhalation toxicity studies. Miller, R.R., Hermann, E.A., Young, J.T., Landry, T.D., Calhoun, L.L. Environ. Health Perspect. (1984) [Pubmed]
  2. Evaluation of 2-methoxyacetic acid toxicity on mouse germ cells by flow cytometry. Spanò, M., Amendola, R., Bartoleschi, C., Emiliani, S., Cordelli, E., Petit, J.M., Julien, R., Ratinaud, M.H. Journal of toxicology and environmental health. (1991) [Pubmed]
  3. Involvement of caspase 3 mediated apoptosis in hematopoietic cytotoxicity of metabolites of ethylene glycol monomethyl ether. Takagi, A., Yamada, T., Hayashi, K., Nakade, Y., Kojima, T., Takamatsu, J., Shibata, E., Ichihara, G., Takeuchi, Y., Murate, T. Industrial health. (2002) [Pubmed]
  4. Ventral duplication of the autopod: chemical induction by methoxyacetic acid in rat embryos. Scott, W.J., Nau, H., Wittfoht, W., Merker, H.J. Development (1987) [Pubmed]
  5. Multiple cadherin superfamily members with unique expression profiles are produced in rat testis. Johnson, K.J., Patel, S.R., Boekelheide, K. Endocrinology (2000) [Pubmed]
  6. Rat pachytene spermatocytes down-regulate a polo-like kinase and up-regulate a thiol-specific antioxidant protein, whereas sertoli cells down-regulate a phosphodiesterase and up-regulate an oxidative stress protein after exposure to methoxyethanol and methoxyacetic acid. Syed, V., Hecht, N.B. Endocrinology (1998) [Pubmed]
  7. The possible role of one-carbon moieties in 2-methoxyethanol and 2-methoxyacetic acid-induced developmental toxicity. Mebus, C.A., Welsch, F. Toxicol. Appl. Pharmacol. (1989) [Pubmed]
  8. Studies on the toxicity of some glycol ethers and alkoxyacetic acids in primary testicular cell cultures. Gray, T.J., Moss, E.J., Creasy, D.M., Gangolli, S.D. Toxicol. Appl. Pharmacol. (1985) [Pubmed]
  9. N-acetylcysteine prevents MAA induced male germ cell apoptosis: role of glutathione and cytochrome c. Rao, A.V., Shaha, C. FEBS Lett. (2002) [Pubmed]
  10. Accumulation of clusterin/sulfated glycoprotein-2 in degenerating pachytene spermatocytes of adult rats treated with methoxyacetic acid. Clark, A.M., Maguire, S.M., Griswold, M.D. Biol. Reprod. (1997) [Pubmed]
  11. Protection against 2-methoxyethanol-induced teratogenesis by serine enantiomers: studies of potential alteration of 2-methoxyethanol pharmacokinetics. Clarke, D.O., Mebus, C.A., Miller, F.J., Welsch, F. Toxicol. Appl. Pharmacol. (1991) [Pubmed]
  12. Pharmacokinetics of 2-methoxyethanol and 2-methoxyacetic acid in the pregnant mouse: a physiologically based mathematical model. Clarke, D.O., Elswick, B.A., Welsch, F., Conolly, R.B. Toxicol. Appl. Pharmacol. (1993) [Pubmed]
  13. 2-Methoxyacetic acid dosimetry-teratogenicity relationships in CD-1 mice exposed to 2-methoxyethanol. Clarke, D.O., Duignan, J.M., Welsch, F. Toxicol. Appl. Pharmacol. (1992) [Pubmed]
  14. Anti-müllerian hormone and anti-müllerian hormone type II receptor messenger ribonucleic acid expression during postnatal testis development and in the adult testis of the rat. Baarends, W.M., Hoogerbrugge, J.W., Post, M., Visser, J.A., De Rooij, D.G., Parvinen, M., Themmen, A.P., Grootegoed, J.A. Endocrinology (1995) [Pubmed]
  15. Mitochondrial cytochrome C oxidase II messenger ribonucleic acid is expressed in pachytene spermatocytes at high levels and in a stage-dependent manner during spermatogenesis in the rat. Saunders, P.T., Millar, M.R., West, A.P., Sharpe, R.M. Biol. Reprod. (1993) [Pubmed]
  16. Expression cloning of a rat testicular transcript abundant in germ cells, which contains two leucine zipper motifs. Turner, K.J., Sharpe, R.M., Gaughan, J., Millar, M.R., Foster, P.M., Saunders, P.T. Biol. Reprod. (1997) [Pubmed]
  17. Assay of methoxyacetic acid in body fluids and tissues by gas chromatography-mass spectrometry following tert.-butyldimethylsilylation. Wittfoht, W., Scott, W.J., Nau, H. J. Chromatogr. (1988) [Pubmed]
  18. Immunotoxicity of 2-methoxyethanol following oral administration in Fischer 344 rats. Smialowicz, R.J., Riddle, M.M., Luebke, R.W., Copeland, C.B., Andrews, D., Rogers, R.R., Gray, L.E., Laskey, J.W. Toxicol. Appl. Pharmacol. (1991) [Pubmed]
  19. The relationship of embryotoxicity to disposition of 2-methoxyethanol in mice. Sleet, R.B., Greene, J.A., Welsch, F. Toxicol. Appl. Pharmacol. (1988) [Pubmed]
  20. The chemotherapeutic potential of glycol alkyl ethers: structure-activity studies of nine compounds in a Fischer-rat leukemia transplant model. Dieter, M.P., Jameson, C.W., Maronpot, R.R., Langenbach, R., Braun, A.G. Cancer Chemother. Pharmacol. (1990) [Pubmed]
  21. Mutagenicity and cytotoxicity of 2-methoxyethanol and its metabolites in Chinese hamster cells (the CHO/HPRT and AS52/GPT assays). Ma, H., An, J., Hsie, A.W., Au, W.W. Mutat. Res. (1993) [Pubmed]
  22. Rat testicular Src: normal distribution and involvement in ethylene glycol monomethyl ether-induced apoptosis. Wang, W., Wine, R.N., Chapin, R.E. Toxicol. Appl. Pharmacol. (2000) [Pubmed]
  23. Biotic and abiotic degradation behaviour of ethylene glycol monomethyl ether (EGME). Fischer, A., Hahn, C. Water Res. (2005) [Pubmed]
  24. Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/ApoJ knock-out mice. Bailey, R.W., Aronow, B., Harmony, J.A., Griswold, M.D. Biol. Reprod. (2002) [Pubmed]
  25. The rat endozepine-like peptide gene is highly expressed in late haploid stages of male germ cell development. Pusch, W., Balvers, M., Weinbauer, G.F., Ivell, R. Biol. Reprod. (2000) [Pubmed]
  26. Enzymatic properties of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver. Porter, D.H., Cook, R.J., Wagner, C. Arch. Biochem. Biophys. (1985) [Pubmed]
  27. Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Bremner, W.J., Millar, M.R., Sharpe, R.M., Saunders, P.T. Endocrinology (1994) [Pubmed]
  28. Investigation of the potential role of the germ cell complement in control of the expression of transferrin mRNA in the prepubertal and adult rat testis. Maguire, S.M., Millar, M.R., Sharpe, R.M., Gaughan, J., Saunders, P.T. J. Mol. Endocrinol. (1997) [Pubmed]
  29. Quantification of apoptotic testicular germ cells in normal and methoxyacetic acid-treated mice as determined by flow cytometry. Krishnamurthy, H., Weinbauer, G.F., Aslam, H., Yeung, C.H., Nieschlag, E. J. Androl. (1998) [Pubmed]
  30. Localization of D-aspartic acid in elongate spermatids in rat testis. Sakai, K., Homma, H., Lee, J.A., Fukushima, T., Santa, T., Tashiro, K., Iwatsubo, T., Imai, K. Arch. Biochem. Biophys. (1998) [Pubmed]
  31. Evaluation of the role of germ cells in regulating the route of secretion of immunoactive inhibin from the rat testis. Maddocks, S., Kerr, J.B., Allenby, G., Sharpe, R.M. J. Endocrinol. (1992) [Pubmed]
 
WikiGenes - Universities