The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

BQ-610     (2R)-2-[[(2R)-2-[[(2S)-2- (azepan-1...

Synonyms: SureCN2678706, BQ610, AC1L3XIP, CTK8F0466, DNC000343, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of BQ-610

  • ET-induced myocardial ischemia was abolished by molsidomine and BQ 610 [1].
  • Concomitant administration of BQ-610 to rats fed on a fructose diet significantly reduced the hypertension [2].
  • The stimulatory effect of 20 nM ET-1 on these channels was markedly attenuated in the presence of the selective ET(A) receptor antagonist BQ-610 (200 nM), or after pertussis toxin (200 ng/ml, 16 h) pretreatment [3].
  • In protocol 3, CR progressively increased with hypotension in the absence but not presence of l-NAME or BQ-610 [4].
  • Our studies showed that insulin infusion caused sustained hyperinsulinemia in both saline- and BQ-610-injected rats over the infusion period [5].

High impact information on BQ-610

  • Cotreatment with the ETA receptor antagonist BQ 610 prevented these effects, whereas inhibitors of G alpha i or G beta gamma were without effect [6].
  • Indeed, blockade of ETA endothelin receptors with BQ-610 (1 microM), similar to removal of the endothelium and alpha5 integrin blockade, inhibited the vasoconstriction [7].
  • The ETA receptor-selective antagonist BQ 610, the novel ETA-receptor antagonist ETR-PI/fl peptide, and the ETB-receptor antagonist IRL 1038 were used to investigate the roles of receptor subtypes [8].
  • ETR-PI/fl peptide inhibited leukocyte rolling by 88%, BQ 610 by 73%, and IRL 1038 by 30% [8].
  • Inotropic effects of endothelin-1: interaction with molsidomine and with BQ 610 [1].

Chemical compound and disease context of BQ-610

  • Forty-five isolated rat hearts were perfused with Krebs-Henseleit buffer (KHB) for 15 min and then subjected to 0, 15, or 60 min of ischemia followed by 5 min of reperfusion with KHB, KHB + BQ-610, or KHB + BQ-123 [9].

Biological context of BQ-610

  • Pretreatment with molsidomine and BQ 610 attenuated the ET-induced reduction of cardiac output (ET-1: -62%; molsidomine+ET-1: -47%; BQ 610+ET-1: -27% different from controls) [1].
  • Neither antagonist significantly modified the ET-1-induced changes in tumour blood flow or vascular resistance, whereas in the majority of normal tissues BQ-610 attenuated and BQ-788 potentiated the vascular resonse to ET-1 [10].
  • No significant changes were found in insulin sensitivity and blood pressure in saline-infused rats treated with BQ-610 [5].
  • This response was blunted by reactive oxygen species (ROS) scavengers (mannitol and superoxide dismutase plus catalase) and was converted into vasodilation by l-NAME, BQ-610, or BQ-788 [4].
  • BQ-610 in 6 animals renal blood flow increased (2.3 +/- 0.7 ml. per minute per kg., p < 0.05) and mean arterial blood pressure decreased (-2.7 +/- 0.3 mm. Hg, p < 0.05 versus vehicle) [11].

Anatomical context of BQ-610


Associations of BQ-610 with other chemical compounds


Gene context of BQ-610

  • In addition, BQ 610, an ETA receptor subtype antagonist, inhibited ET-1-induced cAMP accumulation in a dose-dependent manner (IC50s for bovine and cat were 11 and 19.5 nM, respectively) [18].
  • Results showed that ETs-stimulated NOS activity was inhibited by a selective ETB antagonist (BQ-788), but not by a selective ETA antagonist (BQ-610) [19].
  • The specific ET(A) receptor antagonist, BQ-610 (1 microM), significantly inhibited ET-1-stimulated adiponectin secretion [20].
  • Using [3H]2-deoxy-D-1-glucose ([3H]2-DG) as a tracer in studies of glucose uptake, we found that equimolar BQ-610 completely reversed the inhibitory effect of ET-1 on ISGU, whereas IRL-1038 was ineffective [21].
  • We hypothesized that ET(A) blockers (EMD 122946 and BQ 610) would reduce hypoxia-induced (HYP) but not group B streptococcal infusion (GBS)-induced pulmonary hypertension in a juvenile whole animal model [22].

Analytical, diagnostic and therapeutic context of BQ-610

  • In group 4, BQ 610 had no effect on perfusion nor on vessel size and antagonized the effect of endothelin-1 on perfusion and vessel size in group 5 [12].
  • Intravascular infusion of Fg induced significant constriction of 3As and 2As (by 33.4 +/- 3.4 and 23.7 +/- 4.3%, respectively) in vivo and was abolished in the presence of the specific endothelin type A receptor blocker BQ-610 [23].
  • The local microvascular perfusion, measured by the arterio-venous transit time, was improved during reperfusion by BQ 610 (1.3+/-0.5 s in the control vs. 0.7+/-0.2 s in the experimental group, P<0.05) [24].
  • To study the role of ET(A) receptors under these pathophysiological conditions, one group was treated with the ET(A) antagonist BQ 610 (0.8 micromol/l) during hypoperfusion, and compared with a control group which received a saline infusion during hypoperfusion [25].
  • Moreover, BQ-123 and BQ-610, when administered alone, evoked a significant decrease in the mitotic index [26].


  1. Inotropic effects of endothelin-1: interaction with molsidomine and with BQ 610. Beyer, M.E., Slesak, G., Hövelborn, T., Kazmaier, S., Nerz, S., Hoffmeister, H.M. Hypertension (1999) [Pubmed]
  2. Overexpression of vascular endothelin-1 and endothelin-A receptors in a fructose-induced hypertensive rat model. Juan, C.C., Fang, V.S., Hsu, Y.P., Huang, Y.J., Hsia, D.B., Yu, P.C., Kwok, C.F., Ho, L.T. J. Hypertens. (1998) [Pubmed]
  3. Endothelin activates large-conductance K+ channels in rat lactotrophs: reversal by long-term exposure to dopamine agonist. Kanyicska, B., Freeman, M.E., Dryer, S.E. Endocrinology (1997) [Pubmed]
  4. Paradoxical coronary microcirculatory constriction during ischemia: a synergic function for nitric oxide and endothelin. Kusmic, C., Lazzerini, G., Coceani, F., Barsacchi, R., L'abbate, A., Sambuceti, G. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  5. Insulin infusion induces endothelin-1-dependent hypertension in rats. Juan, C.C., Shen, Y.W., Chien, Y., Lin, Y.J., Chang, S.F., Ho, L.T. Am. J. Physiol. Endocrinol. Metab. (2004) [Pubmed]
  6. Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. Ishibashi , K.I., Imamura, T., Sharma, P.M., Huang, J., Ugi, S., Olefsky, J.M. J. Clin. Invest. (2001) [Pubmed]
  7. RGDN peptide interaction with endothelial alpha5beta1 integrin causes sustained endothelin-dependent vasoconstriction of rat skeletal muscle arterioles. Mogford, J.E., Davis, G.E., Meininger, G.A. J. Clin. Invest. (1997) [Pubmed]
  8. Endothelin 1 induces leukocyte adhesion in submucosal venules of the rat small intestine. Boros, M., Massberg, S., Baranyi, L., Okada, H., Messmer, K. Gastroenterology (1998) [Pubmed]
  9. Endothelin antagonists diminish postischemic microvascular incompetence and necrosis in the heart. Maxwell, L., Harrison, W.R., Gavin, J.B. Microvasc. Res. (2000) [Pubmed]
  10. Vascular response of tumour and normal tissues to endothelin-1 following antagonism of ET(A) and ET(B) receptors in anaesthetised rats. Bell, K.M., Prise, V.E., Chaplin, D.J., Wordsworth, S., Tozer, G.M. Int. J. Cancer (1997) [Pubmed]
  11. Exogenous endothelin-1 causes renal vasodilation in the fetal lamb. Bogaert, G.A., Kogan, B.A., Mevorach, R.A., Wong, J., Gluckman, G.R., Fineman, J.R., Heymann, M.A. J. Urol. (1996) [Pubmed]
  12. Study of microcirculation by coloured microspheres and NMR-microscopy in isolated rat heart: effect of ischaemia, endothelin-1 and endothelin-1 antagonist BQ 610. Hiller, K.H., Roder, F., Adami, P., Voll, S., Kowallik, P., Haase, A., Ertl, G., Bauer, W.R. J. Mol. Cell. Cardiol. (1997) [Pubmed]
  13. Endothelins-induce cyclicAMP formation in the guinea-pig trachea through an ETA receptor- and cyclooxygenase-dependent mechanism. el-Mowafy, A.M., Abou-Mohamed, G.A. Br. J. Pharmacol. (1996) [Pubmed]
  14. Unique response of human arteries to endothelin B receptor agonist and antagonist. Liu, J.J., Chen, J.R., Buxton, B.F. Clin. Sci. (1996) [Pubmed]
  15. Experimental diabetes upregulates the expression of uretereral endothelin receptors. Nakamura, I., Saito, M., Fukumoto, Y., Yoshida, M., Nishi, K., Weiss, R.M., Latifpour, J. Peptides (1997) [Pubmed]
  16. Pharmacologic characterization of endothelin receptor responses in the isolated perfused rat lung. Uhlig, S., von Bethmann, A.N., Featherstone, R.L., Wendel, A. Am. J. Respir. Crit. Care Med. (1995) [Pubmed]
  17. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Caligiuri, A., Glaser, S., Rodgers, R.E., Phinizy, J.L., Robertson, W., Papa, E., Pinzani, M., Alpini, G. Am. J. Physiol. (1998) [Pubmed]
  18. Prostaglandins mediate the stimulatory effects of endothelin-1 on cyclic adenosine monophosphate accumulation in ciliary smooth muscle isolated from bovine, cat, and other mammalian species. Abdel-Latif, A.A., Yousufzai, S.Y., el-Mowafy, A.M., Ye, Z. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  19. Endothelin 1 and 3 enhance neuronal nitric oxide synthase activity through ETB receptors involving multiple signaling pathways in the rat anterior hypothalamus. Jaureguiberry, M.S., di Nunzio, A.S., Dattilo, M.A., Bianciotti, L.G., Vatta, M.S. Peptides (2004) [Pubmed]
  20. Regulation of adiponectin secretion by endothelin-1. Clarke, K.J., Zhong, Q., Schwartz, D.D., Coleman, E.S., Kemppainen, R.J., Judd, R.L. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  21. Evidence that endothelin-1 (ET-1) inhibits insulin-stimulated glucose uptake in rat adipocytes mainly through ETA receptors. Lee, Y.C., Juan, C.C., Fang, V.S., Hsu, Y.P., Lin, S.H., Kwok, C.F., Ho, L.T. Metab. Clin. Exp. (1998) [Pubmed]
  22. Endothelin-A receptor blockade in porcine pulmonary hypertension. Ambalavanan, N., Philips, J.B., Bulger, A., Oparil, S., Chen, Y.F. Pediatr. Res. (2002) [Pubmed]
  23. Fibrinogen and fragment D-induced vascular constriction. Lominadze, D., Tsakadze, N., Sen, U., Falcone, J.C., D'Souza, S.E. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  24. Impact of the endothelin-A receptor antagonist BQ 610 on microcirculation in global cerebral ischemia and reperfusion. Lehmberg, J., Putz, C., Fürst, M., Beck, J., Baethmann, A., Uhl, E. Brain Res. (2003) [Pubmed]
  25. ET(A) receptor blockade improves post-ischaemic functional recovery in 'hibernating' rat myocardium. Beyer, M.E., Fischer, M., Hövelborn, T., Hoffmeister, H.M. Clin. Sci. (2002) [Pubmed]
  26. Endothelin-1, acting via the A receptor subtype, stimulates thymocyte proliferation in the rat. Malendowicz, L.K., Brelinska, R., De Caro, R., Trejer, M., Nussdorfer, G.G. Life Sci. (1998) [Pubmed]
WikiGenes - Universities