The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AG-K-52384     3-[bis(4- chlorophenyl)methyl]-1-[2- (2,4...

Synonyms: CHEBI:75400, Probes1_000251, Probes2_000292, CCG-204367, Lopac0_000272, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Calmidazolium


Psychiatry related information on Calmidazolium


High impact information on Calmidazolium


Chemical compound and disease context of Calmidazolium


Biological context of Calmidazolium

  • However, calmidazolium is effective in inhibiting the intracellular Ca2+ pump with an IC50 of approximately 2 microM [15].
  • Perturbation of phosphorylation by 48/80 and calmidazolium may lead to enhanced Ca2+ release, thereby diminishing Ca2+ accumulation without affecting the Ca2+ uptake mechanism [16].
  • Furthermore, SOX9-mediated transcriptional activation by cells expressing the A158T mutant is more sensitive to CDZ than cells expressing WT SOX9 [17].
  • Our results show that calmidazolium is a high-affinity, noncompetitive inhibitor of skeletal SR CaATPase activity, and they suggest that this inhibition is based on binding to the membrane phospholipids rather than specific antagonism of enzyme activation by calmodulin [18].
  • Relaxation enhancements induced by two spin-labeled calmidazolium analogues demonstrate that several methionine residues of CaM, significantly immobilized by calmidazolium binding, are in fact located at or near its binding sites [19].

Anatomical context of Calmidazolium


Associations of Calmidazolium with other chemical compounds


Gene context of Calmidazolium

  • In inside-out membrane patches, Trp4 is activated strongly by calmidazolium, an antagonist of CaM, and a high (50 microm) but not a low (5 microm) concentration of the Trp-binding peptide of the IP(3)R [26].
  • Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK [27].
  • In addition, BAPTA, calmidazolium, a calmodulin antagonist and PD98059 inhibited VEGF secretion by hypoxic HepG2 [28].
  • Finally, calmidazolium, an inhibitor of calmodulin, had an enhancing effect on IFN-gamma yields when phytohemagglutinin (PHA) was the inducer and an adverse effect when A23187 was the inducer [29].
  • The activation of ERK1 and 2 by increases in intracellular calcium was inhibited by calmidazolium suggesting the involvement of calmodulin in this response [30].

Analytical, diagnostic and therapeutic context of Calmidazolium


  1. Modulation of HT-29 human colonic cancer cell differentiation with calmidazolium and 12-O-tetradecanoylphorbol-13-acetate. Rochette-Egly, C., Kedinger, M., Haffen, K. Cancer Res. (1988) [Pubmed]
  2. The calmodulin antagonist calmidazolium stimulates release of nitric oxide in neuroblastoma N1E-115 cells. Hu, J., el-Fakahany, E.E. Neuroreport (1993) [Pubmed]
  3. Calmodulin in ischemic neurotoxicity of rat hippocampus in vitro. Sun, X., Shin, C., Windebank, A.J. Neuroreport (1997) [Pubmed]
  4. Ischemic brain injury in vitro: protective effects of NMDA receptor antagonists and calmidazolium. Pohorecki, R., Becker, G.L., Reilly, P.J., Landers, D.F. Brain Res. (1990) [Pubmed]
  5. The importance of calmodulin in the accessory olfactory bulb in the formation of an olfactory memory in mice. Nakazawa, H., Kaba, H., Higuchi, T., Inoue, S. Neuroscience (1995) [Pubmed]
  6. Inhibition of high voltage-activated calcium currents by L-glutamate receptor-mediated calcium influx. Zeilhofer, H.U., Müller, T.H., Swandulla, D. Neuron (1993) [Pubmed]
  7. Extracellular ATP as a trigger for apoptosis or programmed cell death. Zheng, L.M., Zychlinsky, A., Liu, C.C., Ojcius, D.M., Young, J.D. J. Cell Biol. (1991) [Pubmed]
  8. Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Fleming, I., Bauersachs, J., Fisslthaler, B., Busse, R. Circ. Res. (1998) [Pubmed]
  9. Subcellular mechanism for Ca(2+)-dependent enhancement of delayed rectifier K+ current in isolated membrane patches of guinea pig ventricular myocytes. Nitta, J., Furukawa, T., Marumo, F., Sawanobori, T., Hiraoka, M. Circ. Res. (1994) [Pubmed]
  10. Retinoic acid-stimulated intercellular adhesion molecule-1 expression on SK-N-SH cells: calcium/calmodulin-dependent pathway. Bouillon, M., Audette, M. Cancer Res. (1994) [Pubmed]
  11. Calmodulin inhibitors potentiate hyperthermic cell killing. Wiegant, F.A., Tuyl, M., Linnemans, W.A. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. (1985) [Pubmed]
  12. Anti-ischemic and membrane stabilizing activity of calmodulin inhibitors. Beresewicz, A. Basic Res. Cardiol. (1989) [Pubmed]
  13. Ketamine, MK-801 or calmidazolium protects rat hippocampal energy status during in vitro ischemia. Pohorecki, R., Becker, G.L., Reilly, P.J., Landers, D.F. Ann. N. Y. Acad. Sci. (1991) [Pubmed]
  14. Erythrocyte membrane stabilization by calcium channel blockers, calmodulin antagonists and scavengers of oxygen free radicals. Beresewicz, A., Karwatowska-Prokopczuk, E. Polish journal of pharmacology and pharmacy. (1990) [Pubmed]
  15. An intracellular (ATP + Mg2+)-dependent calcium pump within the N1E-115 neuronal cell line. Gill, D.L., Chueh, S.H. J. Biol. Chem. (1985) [Pubmed]
  16. Calmidazolium and compound 48/80 inhibit calmodulin-dependent protein phosphorylation and ATP-dependent Ca2+ uptake but not Ca2+-ATPase activity in skeletal muscle sarcoplasmic reticulum. Tuana, B.S., MacLennan, D.H. J. Biol. Chem. (1984) [Pubmed]
  17. A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. Argentaro, A., Sim, H., Kelly, S., Preiss, S., Clayton, A., Jans, D.A., Harley, V.R. J. Biol. Chem. (2003) [Pubmed]
  18. Inhibition of skeletal muscle sarcoplasmic reticulum CaATPase activity by calmidazolium. Anderson, K.W., Coll, R.J., Murphy, A.J. J. Biol. Chem. (1984) [Pubmed]
  19. A proton nuclear magnetic resonance and molecular modeling study of calmidazolium (R24571) binding to calmodulin and skeletal muscle troponin C. Reid, D.G., MacLachlan, L.K., Gajjar, K., Voyle, M., King, R.J., England, P.J. J. Biol. Chem. (1990) [Pubmed]
  20. Calmidazolium, a calmodulin antagonist, stimulates calcium-troponin C and calcium-calmodulin-dependent activation of striated muscle myofilaments. el-Saleh, S.C., Solaro, R.J. J. Biol. Chem. (1987) [Pubmed]
  21. Hepatic adenosine triphosphate-dependent Ca2+ transport is mediated by distinct carriers on rat basolateral and canalicular membranes. Blitzer, B.L., Hostetler, B.R., Scott, K.A. J. Clin. Invest. (1989) [Pubmed]
  22. In vivo characterization of combination antitumor chemotherapy with calcium channel blockers and cis-diamminedichloroplatinum(II). Onoda, J.M., Nelson, K.K., Taylor, J.D., Honn, K.V. Cancer Res. (1989) [Pubmed]
  23. Calmodulin-mediated adenylate cyclase from mammalian sperm. Gross, M.K., Toscano, D.G., Toscano, W.A. J. Biol. Chem. (1987) [Pubmed]
  24. Angiotensin II stimulates the synthesis of angiotensinogen in hepatocytes by inhibiting adenylylcyclase activity and stabilizing angiotensinogen mRNA. Klett, C., Nobiling, R., Gierschik, P., Hackenthal, E. J. Biol. Chem. (1993) [Pubmed]
  25. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase. Eguchi, S., Matsumoto, T., Motley, E.D., Utsunomiya, H., Inagami, T. J. Biol. Chem. (1996) [Pubmed]
  26. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. Tang, J., Lin, Y., Zhang, Z., Tikunova, S., Birnbaumer, L., Zhu, M.X. J. Biol. Chem. (2001) [Pubmed]
  27. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. Budagian, V., Bulanova, E., Brovko, L., Orinska, Z., Fayad, R., Paus, R., Bulfone-Paus, S. J. Biol. Chem. (2003) [Pubmed]
  28. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. Mottet, D., Michel, G., Renard, P., Ninane, N., Raes, M., Michiels, C. J. Cell. Physiol. (2003) [Pubmed]
  29. The effect of calcium-related factors on the predominance of IFN-gamma or interleukin-4 in cultured mononuclear cells. Enomoto, H., Yousefi, S., Vaziri, N., Khonsari, S., Ocariz, J., Delavarian, M.G., Cesario, T. J. Interferon Cytokine Res. (1998) [Pubmed]
  30. Calcium-induced ERK activation in human T lymphocytes occurs via p56(Lck) and CaM-kinase. Franklin, R.A., Atherfold, P.A., McCubrey, J.A. Mol. Immunol. (2000) [Pubmed]
  31. 5-Hydroxytryptamine type 2A receptors regulate cyclic AMP accumulation in a neuronal cell line by protein kinase C-dependent and calcium/calmodulin-dependent mechanisms. Berg, K.A., Clarke, W.P., Chen, Y., Ebersole, B.J., McKay, R.D., Maayani, S. Mol. Pharmacol. (1994) [Pubmed]
  32. Forskolin and calcium: interactions in the control of renin secretion and perfusate flow in the isolated rat kidney. Fray, J.C., Park, C.S. J. Physiol. (Lond.) (1986) [Pubmed]
  33. The involvement of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the circadian rhythms controlled by the suprachiasmatic nucleus. Fukushima, T., Shimazoe, T., Shibata, S., Watanabe, A., Ono, M., Hamada, T., Watanabe, S. Neurosci. Lett. (1997) [Pubmed]
  34. Involvement of calmodulin inhibition in analgesia induced with low doses of intrathecal trifluoperazine. Golbidi, S., Moriuchi, H., Irie, T., Ghafghazi, T., Hajhashemi, V. Jpn. J. Pharmacol. (2002) [Pubmed]
  35. Effect of calmidazolium on Ca(+2) movement and proliferation in human osteosarcoma cells. Tseng, L.L., Huang, C.J., Hsu, S.S., Chen, J.S., Cheng, H.H., Chang, H.T., Jiann, B.P., Jan, C.R. Clin. Exp. Pharmacol. Physiol. (2004) [Pubmed]
WikiGenes - Universities