The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Coturnix

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Coturnix

 

Psychiatry related information on Coturnix

 

High impact information on Coturnix

  • It is active in all skeletal myoblast systems tested (Yaffe's L6 line as well as primary cultures of rat, chick, and Japanese quail myoblasts), and it blocks fusion, elevation of creatine kinase, and increased binding of alpha-bungarotoxin [11].
  • In gallinaceous birds such as the Japanese quail, female brain organization is thought to develop via estrogen-dependent demasculinization of a default male brain phenotype [12].
  • Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development [13].
  • In addition, we have determined the structure of PHL, Guinea fowl egg lysozyme, and Japanese quail egg lysozyme [14].
  • We have isolated a quail (Coturnix coturnix japonica) cDNA clone, named QR1, encoding a 676-amino acid protein whose carboxyl-terminal portion shows significant similarity to those of the extracellular glycoprotein osteonectin/SPARC/BM40 and of the recently described SC1 protein [15].
 

Chemical compound and disease context of Coturnix

 

Biological context of Coturnix

 

Anatomical context of Coturnix

 

Associations of Coturnix with chemical compounds

 

Gene context of Coturnix

  • Comparisons between Japanese quail and snapping turtle tyrosinase genes gave similar results [35].
  • To understand avian circadian system, we have cloned Clock and Period homologs (qClock, qPer2 and qPer3) and characterized these genes in Japanese quail [36].
  • We have initiated studies of the ERbeta in the brain of two avian species, the Japanese quail (Coturnix japonica) and the European starling (Sturnus vulgaris) [37].
  • Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome [38].
  • Moreover, black chickens carrying the dominant allele, the extended black, express the MC1-R with ligand-independent activity as the somber-3J black mice. alpha-MSH and AGRP were expressed in the infundibular nucleus of POMC and NPY neurons, respectively, in the brain of Japanese quail [39].
 

Analytical, diagnostic and therapeutic context of Coturnix

References

  1. Molecular cloning and characterization of gag-, pol-, and env-related gene sequences in the ev- chicken. Dunwiddie, C.T., Resnick, R., Boyce-Jacino, M., Alegre, J.N., Faras, A.J. J. Virol. (1986) [Pubmed]
  2. Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. Sahin, K., Onderci, M., Sahin, N., Gursu, M.F., Kucuk, O. J. Nutr. (2003) [Pubmed]
  3. Induction of acute renal porphyria in Japanese quail by Aroclor 1254. Miranda, C.L., Henderson, M.C., Wang, J.L., Nakaue, H.S., Buhler, D.R. Biochem. Pharmacol. (1986) [Pubmed]
  4. Acrylamide-induced peripheral neuropathy in normal and neurofilament-deficient Japanese quails. Takahashi, A., Mizutani, M., Itakura, C. Acta Neuropathol. (1995) [Pubmed]
  5. Divergent selection in Japanese quail for the plasma cholesterol response to ACTH. Marks, H.L., Siegel, H.S. Poult. Sci. (1980) [Pubmed]
  6. Estrogen receptors in quail brain: a functional relationship to aromatase and aggressiveness. Schlinger, B.A., Callard, G.V. Biol. Reprod. (1989) [Pubmed]
  7. Expression of hypothalamic arginine vasotocin gene in response to water deprivation and sex steroid administration in female Japanese quail. Seth, R., Köhler, A., Grossmann, R., Chaturvedi, C.M. J. Exp. Biol. (2004) [Pubmed]
  8. Cocaine induces conditioned place preference and increases locomotor activity in male Japanese quail. Levens, N., Akins, C.K. Pharmacol. Biochem. Behav. (2001) [Pubmed]
  9. Circadian rhythms of oviposition and feeding activity in Japanese quail: effects of cyclic administration of melatonin. Houdelier, C., Guyomarc'h, C., Lumineau, S., Richard, J.P. Chronobiol. Int. (2002) [Pubmed]
  10. Acute effects of parathyroid extract on renal vitamin D hydroxylases in Japanese quail. Baksi, S.N., Kenny, A.D. Pharmacology (1979) [Pubmed]
  11. Inhibition of myoblast differentiation in vitro by a protein isolated from liver cell medium. Evinger-Hodges, M.J., Ewton, D.Z., Seifert, S.C., Florini, J.R. J. Cell Biol. (1982) [Pubmed]
  12. Male Japanese quails with female brains do not show male sexual behaviors. Gahr, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  13. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Drake, C.J., Little, C.D. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  14. Three-dimensional structure of a heteroclitic antigen-antibody cross-reaction complex. Chitarra, V., Alzari, P.M., Bentley, G.A., Bhat, T.N., Eiselé, J.L., Houdusse, A., Lescar, J., Souchon, H., Poljak, R.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  15. Transcription of a quail gene expressed in embryonic retinal cells is shut off sharply at hatching. Guermah, M., Crisanti, P., Laugier, D., Dezelee, P., Bidou, L., Pessac, B., Calothy, G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  16. Agglutinin responses to Salmonella pullorum in Japanese quail selected for plasma cholesterol response to adrenocorticotropin and a model describing the dynamics of the response. Siegel, H.S., Marks, H.L., Latimer, J.W. Poult. Sci. (1984) [Pubmed]
  17. Toxicity of mercuric chloride in Japanese quail as affected by methods of incorporation into the diet. El-Begearmi, M.M., Ganther, H.E., Sunde, M.L. Poult. Sci. (1980) [Pubmed]
  18. Differences in the distribution of methyl mercury in erythrocytes, plasma, and brain of Japanese quails and rats after a single oral dose. Clausing, P., Riedel, B., Gericke, S., Grün, G., Müller, L. Arch. Toxicol. (1984) [Pubmed]
  19. Chronic cocaine pretreatment facilitates Pavlovian sexual conditioning in male Japanese quail. Levens, N., Akins, C.K. Pharmacol. Biochem. Behav. (2004) [Pubmed]
  20. Involvement of (n-6) essential fatty acids and prostaglandins in liver lipid accumulation in Japanese quail. Murai, A., Furuse, M., Okumura, J. Am. J. Vet. Res. (1996) [Pubmed]
  21. Application of in vivo microdialysis to pineal research in birds: measurement of circadian rhythms of melatonin. Hasegawa, M., Goto, M., Oshima, I., Ebihara, S. Neuroscience and biobehavioral reviews. (1994) [Pubmed]
  22. A high-affinity cytosol binding protein for 1 alpha,25-dihydroxycholecalciferol in the uterus of Japanese quail. Takahashi, N., Abe, E., Tanabe, R., Suda, T. Biochem. J. (1980) [Pubmed]
  23. Sexual behavior in Japanese quail as a test end point for endocrine disruption: effects of in ovo exposure to ethinylestradiol and diethylstilbestrol. Halldin, K., Berg, C., Brandt, I., Brunström, B. Environ. Health Perspect. (1999) [Pubmed]
  24. Activity of cholinesterases in the Japanese quail embryo. Effects of dichlorphos on the embryonic development. Kaltner, H., Andrae, S., Wittmann, J. Biochem. Pharmacol. (1993) [Pubmed]
  25. Differential regulation of IGFBP-2 and IGFBP-5 gene expression by vitamin A status in Japanese quail. Fu, Z., Noguchi, T., Kato, H. Am. J. Physiol. Endocrinol. Metab. (2001) [Pubmed]
  26. Tartrate-resistant acid phosphatase accumulated in the matrix of developing medullary bone induced by estrogen treatment of male Japanese quail. Yamamoto, T., Nagai, H. J. Bone Miner. Res. (1994) [Pubmed]
  27. Acrylamide-induced neurotoxicity in the central nervous system of Japanese quails. Comparative studies of normal and neurofilament-deficient quails. Takahashi, A., Mizutani, M., Agr, B., Itakura, C. J. Neuropathol. Exp. Neurol. (1994) [Pubmed]
  28. Regulation of the expression of serotonin N-acetyltransferase gene in Japanese quail (Coturnix japonica): II. Effect of vitamin A deficiency. Fu, Z., Kato, H., Kotera, N., Sugahara, K., Kubo, T. J. Pineal Res. (1999) [Pubmed]
  29. Hepatic uroporphyrin accumulation and uroporphyrinogen decarboxylase activity in cultured chick-embryo hepatocytes and in Japanese quail (Coturnix coturnix japonica) and mice treated with polyhalogenated aromatic compounds. Lambrecht, R.W., Sinclair, P.R., Bement, W.J., Sinclair, J.F., Carpenter, H.M., Buhler, D.R., Urquhart, A.J., Elder, G.H. Biochem. J. (1988) [Pubmed]
  30. Control of renal vitamin D hydroxylases in birds by sex hormones. Tanaka, Y., Castillo, L., DeLuca, H.F. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  31. Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dersch, H., Zile, M.H. Dev. Biol. (1993) [Pubmed]
  32. Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor, and model building studies of complexes with serine proteases. Papamokos, E., Weber, E., Bode, W., Huber, R., Empie, M.W., Kato, I., Laskowski, M. J. Mol. Biol. (1982) [Pubmed]
  33. Effects of fish oil on arteriosclerosis in the Japanese quail. Fann, J.I., Angell, S.K., Cahill, P.D., Kosek, J.C., Miller, D.C. Cardiovasc. Res. (1989) [Pubmed]
  34. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Yamamura, T., Hirunagi, K., Ebihara, S., Yoshimura, T. Endocrinology (2004) [Pubmed]
  35. Phylogeny of regulatory regions of vertebrate tyrosinase genes. Yamamoto, H., Kudo, T., Masuko, N., Miura, H., Sato, S., Tanaka, M., Tanaka, S., Takeuchi, S., Shibahara, S., Takeuchi, T. Pigment Cell Res. (1992) [Pubmed]
  36. Molecular analysis of avian circadian clock genes. Yoshimura, T., Suzuki, Y., Makino, E., Suzuki, T., Kuroiwa, A., Matsuda, Y., Namikawa, T., Ebihara, S. Brain Res. Mol. Brain Res. (2000) [Pubmed]
  37. Steroid sensitive sites in the avian brain: does the distribution of the estrogen receptor alpha and beta types provide insight into their function? Ball, G.F., Bernard, D.J., Foidart, A., Lakaye, B., Balthazart, J. Brain Behav. Evol. (1999) [Pubmed]
  38. Comparative FISH mapping on Z chromosomes of chicken and Japanese quail. Suzuki, T., Kansaku, N., Kurosaki, T., Shimada, K., Zadworny, D., Koide, M., Mano, T., Namikawa, T., Matsuda, Y. Cytogenet. Cell Genet. (1999) [Pubmed]
  39. Avian melanocortin system: alpha-MSH may act as an autocrine/paracrine hormone: a minireview. Takeuchi, S., Takahashi, S., Okimoto, R., Schioth, H.B., Boswell, T. Ann. N. Y. Acad. Sci. (2003) [Pubmed]
  40. Identification of catecholaminergic inputs to and outputs from aromatase-containing brain areas of the Japanese quail by tract tracing combined with tyrosine hydroxylase immunocytochemistry. Balthazart, J., Absil, P. J. Comp. Neurol. (1997) [Pubmed]
  41. Localization of estrogen receptor-alpha and -betamRNA in brain areas controlling sexual behavior in Japanese quail. Halldin, K., Axelsson, J., Holmgren, C., Brunström, B. J. Neurobiol. (2006) [Pubmed]
  42. Distribution of benzodiazepine binding sites in the brain of the male Japanese quail and its correlation to a hormonal control: quantitative autoradiography study. Canonaco, M., Tavolaro, R., Cerra, M.C., Franzoni, M.F. Neuroendocrinology (1992) [Pubmed]
  43. Plasma levels of luteinizing hormone in gonadectomized Japanese quail exposed to short or to long daylengths. Gibson, W.R., Follett, B.K., Gledhill, B. J. Endocrinol. (1975) [Pubmed]
  44. Molecular cloning and circadian regulation of cryptochrome genes in Japanese quail (Coturnix coturnix japonica). Fu, Z., Inaba, M., Noguchi, T., Kato, H. J. Biol. Rhythms (2002) [Pubmed]
 
WikiGenes - Universities