The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Nitroanisole     1-methoxy-4-nitro-benzene

Synonyms: p-Nitroanisol, P-NITROANISOLE, CHEMBL57537, SureCN492221, NSC-5507, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of p-Nitroanisol

  • In the case of both pesticides the early effects observed consisted of hepatomegaly accompanied by an increase in the p-nitroanisole O-demethylase activity and hepatocyte proliferation [1].
  • In CCl4-treated mice, in which liver microsomal monooxygenase activities were decreased markedly, and kidney microsomal aniline hydroxylase and p-nitroanisole demethylase activities were increased to about twice those of the untreated mice, renal toxicity of CHCl3 was greatly potentiated, and the latter effect was also blocked by both agents [2].
  • O-Demethylation of p-nitroanisole by Escherichia coli. Stimulation by phenobarbital [3].
  • In the column experiments described here, diffusive transport of 4-nitroanisole from the bulk solution to cells of Rhodococcus opacus strain AS2 immobilized on glass beads or sand appeared to be responsible for the slow transformation rates observed [4].
  • No significant associations were observed between the susceptibility to the tonic-clonic seizures in Mongolian gerbils and the drug-metabolizing enzymatic activities of p-nitroanisole O-demethylase, aminopyrine demethylase and benzo[a]pyrene-3-monooxygenase [5].

High impact information on p-Nitroanisol


Biological context of p-Nitroanisol


Anatomical context of p-Nitroanisol


Associations of p-Nitroanisol with other chemical compounds


Gene context of p-Nitroanisol

  • CYP2E1 contributes to chlorzoxazone 6-hydroxylation, p-nitroanisole O-demethylation, and toluene hydroxylation by 45.8%, 27.7% and 44.2% respectively, and CYP2C8/9/19 contribute to diazepam N-demethylation by 30.6% [24].
  • Cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in Helicoverpa armigera (Hübner) from Asia. Cytochrome P450-mediated O-demethylation activity toward p-nitroanisole (PNOD) of individual fourth instars was determined in five strains of H. armigera by using a microplate reader [25].
  • Microsomal UDP-glucuronosyltransferase activity toward morphine was induced at low doses in a manner similar to that of p-nitroanisole demethylase [26].
  • The inactivation of cytochrome P-450 by CBD and related compounds led to the inhibition of hepatic microsomal p-nitroanisole O-demethylase and aniline hydroxylase activities [27].
  • No changes in NADPH-cytochrome c reductase, NADH-ferricyanide reductase, or NADH-supported p-nitroanisole O-demethylase activity were noted [28].

Analytical, diagnostic and therapeutic context of p-Nitroanisol


  1. Early hepatic changes induced in rats by two hepatocarcinogenic organohalogen pesticides: bromopropylate and DDT. Kostka, G., Kopeć-Szlezak, J., Palut, D. Carcinogenesis (1996) [Pubmed]
  2. Protective action of diethyldithiocarbamate and carbon disulfide against renal injury induced by chloroform in mice. Masuda, Y., Nakayama, N. Biochem. Pharmacol. (1983) [Pubmed]
  3. O-Demethylation of p-nitroanisole by Escherichia coli. Stimulation by phenobarbital. Edelson, J., McMullen, J.P. Drug Metab. Dispos. (1977) [Pubmed]
  4. Factors affecting mass transfer limited biodegradation in saturated porous media. Simoni, S.F., Schäfer, A., Harms, H., Zehnder, A.J. J. Contam. Hydrol. (2001) [Pubmed]
  5. Correspondence of increased debrisoquine 4-monooxygenase activity with seizure-susceptibility in Mongolian gerbils. Iwahashi, K., Suwaki, H., Matsuo, Y., Ichikawa, Y., Hosokawa, K. J. Neurol. Sci. (1994) [Pubmed]
  6. Selective reduction of hepatic cytochrome P450 content in patients with intrahepatic cholestasis. A mechanism for impairment of microsomal drug oxidation. Kawata, S., Imai, Y., Inada, M., Tamura, S., Miyoshi, S., Nishikawa, M., Minami, Y., Tarui, S. Gastroenterology (1987) [Pubmed]
  7. Oxidative metabolism of foreign compounds in rat small intestine: cellular localization and dependence on dietary iron. Hoensch, H., Woo, C.H., Raffin, S.B., Schmid, R. Gastroenterology (1976) [Pubmed]
  8. Decreased liver and lung drug-metabolizing activity in mice treated with Corynebacterium parvum. Soyka, L.F., Hunt, W.G., Knight, S.E., Foster, R.S. Cancer Res. (1976) [Pubmed]
  9. Genetic regulation of NADPH supply in perfused mouse liver. Role of the Ah locus during induction by 3-methylcholanthrene. Conway, J.G., Kauffman, F.C., Thurman, R.G. J. Biol. Chem. (1983) [Pubmed]
  10. Multiple drug metabolism: p-nitroanisole reversal of acetone enhanced aniline hydroxylation. Bidlack, W.R., Lowery, G.L. Biochem. Pharmacol. (1982) [Pubmed]
  11. Alteration of plasma sex hormone levels associated with old age and its effect on hepatic drug metabolism in rats. Fujita, S., Chiba, M., Ohta, M., Kitani, K., Suzuki, T. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  12. Inverse relationship between cytochrome P-450 phosphorylation and complexation with cytochrome b5. Jansson, I., Epstein, P.M., Bains, S., Schenkman, J.B. Arch. Biochem. Biophys. (1987) [Pubmed]
  13. Effect of acute and repeated chlordimeform treatment on rat hepatic microsomal drug metabolizing enzymes. Budris, D.M., Yim, G.K., Carlson, G.P., Schnell, R.C. Toxicol. Lett. (1983) [Pubmed]
  14. Inhibition of two rat hepatic microsomal drug-metabolizing enzymes by a carcinogenic N-nitrosated pesticide: N-nitrosocarbaryl. Beraud, M., Gaillard, S., Derache, R. Chem. Biol. Interact. (1980) [Pubmed]
  15. Kinetics of the hydroperoxide-dependent dealkylation reactions catalyzed by rabbit liver microsomal cytochrome P-450. Koop, D.R., Hollenberg, P.F. J. Biol. Chem. (1980) [Pubmed]
  16. Dietary magnesium depletion: p-nitroanisole metabolism and glucuronidation in rat hepatocytes and hepatic microsomal membranes. Brown, R.C., Bidlack, W.R. Proc. Soc. Exp. Biol. Med. (1991) [Pubmed]
  17. Cytochrome P-450 content and mixed-function oxidation by microsomes from rabbit alveolar macrophages. Fisher, A.B., Huber, G.A., Furia, L. J. Lab. Clin. Med. (1977) [Pubmed]
  18. Role of colonic cytochrome P-450 in large bowel carcinogenesis. Strobel, H.W., Fang, W.F., Oshinsky, R.J. Cancer (1980) [Pubmed]
  19. Hypertrophic and hypoactive smooth endoplasmic reticulum in hepatocytes uremic patients. A morphometric and biochemical study. Kawata, S., Seki, K., Shinji, Y., Tarui, S., Sugiyama, T., Yamano, T. Gastroenterol. Jpn. (1982) [Pubmed]
  20. Substrate specificity of the monooxygenase activity of hemoglobin. Starke, D.W., Blisard, K.S., Mieyal, J.J. Mol. Pharmacol. (1984) [Pubmed]
  21. Rates of pentose cycle flux in perfused rat liver. Evaluation of the role of reducing equivalents from the pentose cycle for mixed-function oxidation. Belinsky, S.A., Reinke, L.A., Scholz, R., Kauffman, F.C., Thurman, R.G. Mol. Pharmacol. (1985) [Pubmed]
  22. An inhibitory monoclonal antibody to human cytochrome P450 2A6 defines its role in the metabolism of coumarin, 7-ethoxycoumarin and 4-nitroanisole in human liver. Sai, Y., Yang, T.J., Krausz, K.W., Gonzalez, F.J., Gelboin, H.V. Pharmacogenetics (1999) [Pubmed]
  23. Regulation of p-nitroanisole O-demethylation in perfused rat liver. Adenine nucleotide inhibition of NADP+-dependent dehydrogenases and NADPH-cytochrome c reductase. Kauffman, F.C., Evans, R.K., Reinke, L.A., Thurman, R.G. Biochem. J. (1979) [Pubmed]
  24. Use of inhibitory monoclonal antibodies to assess the contribution of cytochromes P450 to human drug metabolism. Shou, M., Lu, T., Krausz, K.W., Sai, Y., Yang, T., Korzekwa, K.R., Gonzalez, F.J., Gelboin, H.V. Eur. J. Pharmacol. (2000) [Pubmed]
  25. Correlation between fenvalerate resistance and cytochrome P450-mediated O-demethylation activity in Helicoverpa armigera (Lepidoptera: Noctuidae). Chen, S., Yang, Y., Wu, Y. J. Econ. Entomol. (2005) [Pubmed]
  26. Clotrimazole induction of cytochrome P-450: dose-differentiated isozyme induction. Ritter, J.K., Franklin, M.R. Mol. Pharmacol. (1987) [Pubmed]
  27. Self-catalyzed inactivation of cytochrome P-450 during microsomal metabolism of cannabidiol. Watanabe, K., Arai, M., Narimatsu, S., Yamamoto, I., Yoshimura, H. Biochem. Pharmacol. (1987) [Pubmed]
  28. Influence of chronic ethanol consumption on hamster liver microsomal O-dealkylase activities and cytochrome b5 content. McCoy, G.D., DeMarco, G.J., Biaglow, J.A. Biochem. Pharmacol. (1985) [Pubmed]
  29. Interleukin 2 induction of cytochrome P450-linked monooxygenase systems of rat liver microsomes. Kurokohchi, K., Matsuo, Y., Yoneyama, H., Nishioka, M., Ichikawa, Y. Biochem. Pharmacol. (1993) [Pubmed]
  30. Simultaneous determination of 4-nitroanisole, 4-nitrophenol, and 4-nitrocatechol by phase-sensitive ac polarography. Burgschat, H., Netter, K.J. Journal of pharmaceutical sciences. (1977) [Pubmed]
  31. Inhibition of biotransformation of xenobiotic p-nitroanisole after cryopreservation of isolated rat hepatocytes. Petrenko AYu, n.u.l.l., Mazur, S.P. Cryobiology (1993) [Pubmed]
WikiGenes - Universities