The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Vestibular Nuclei

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Vestibular Nuclei


High impact information on Vestibular Nuclei

  • Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices [6].
  • This resulted in a complete lack of Fos labeling in the vestibular nuclei and the inferior olive, and a significant reduction in labeling in other nuclei in the off-axis condition, indicating that these nuclei have a significant labyrinth-sensitive component to their Fos labeling [7].
  • The effects of thiamine (B1) deficiency on local CMRglu (LMCRglu) in the vestibular nuclei were studied with the 14C-2-deoxyglucose autoradiographic method in awake asymptomatic and symptomatic rats [8].
  • In parallel with the modifications in synaptic plasticity, we observed that the expression patterns and localizations of mGluR5 and mGluR1 in the medial vestibular nuclei (MVN) changed during postnatal development [9].
  • The changes in GABA receptor efficacy after UL are therefore not due to the vestibular de-afferentation itself, but are instead due to the imbalance in excitability of the vestibular nuclei of the lesioned and intact sides, and the enhanced commissural inhibition of the ipsi-lesional MVN cells that follows UL [10].

Biological context of Vestibular Nuclei


Anatomical context of Vestibular Nuclei


Associations of Vestibular Nuclei with chemical compounds


Gene context of Vestibular Nuclei

  • In vestibular nuclei, the NR1 subunit mRNA was found in various populations of neurons [12].
  • Calretinin levels in the vestibular nuclei, increased significantly between birth and postnatal day (P) 45 [24].
  • We investigated whether three calcium-binding proteins, calretinin, parvalbumin, and calbindin, could identify specific aspects of the postnatal development of the rat lateral (LVN) and medial (MVN) vestibular nuclei and their vestibular and cerebellar connections [24].
  • In the VN, Calb+ PVA terminations were restricted to the superior, the ventral part of the lateral, the lateral portion of the medial, and the inferior vestibular nuclei [19].
  • PKC delta-immunolabeled axons also terminated within the caudal medial and descending vestibular nuclei (MVN and DVN, respectively), the parasolitary nucleus (Psol), and the nucleus prepositus hypoglossi (NPH) [25].

Analytical, diagnostic and therapeutic context of Vestibular Nuclei


  1. Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Brandt, T., Dieterich, M. Ann. Neurol. (1994) [Pubmed]
  2. Immunohistochemical detection of phosphorylated form of extracellular signal-regulated kinase 1/2 in rat vestibular nuclei following hemorrhagic hypotension. Kim, M.S., Choi, D.O., Choi, M.A., Kim, J.H., Kim, K.Y., Lee, M.Y., Rhee, J.K., Chun, S.W., Park, B.R. Neurosci. Lett. (2004) [Pubmed]
  3. Toxic effects of somatostatin in the cerebellum and vestibular nuclei: multiple sites of action. Balaban, C.D., Severs, W.B. Neurosci. Res. (1991) [Pubmed]
  4. A reduction of vestibulo-visual integration during transdermally administered scopolamine and dimenhydrinate. A presentation of gain control theory in motion sickness. Pyykkö, I., Schalén, L., Jäntti, V., Magnusson, M. Acta oto-laryngologica. Supplementum. (1984) [Pubmed]
  5. Effect of a glutamate blocker, ipenoxazone hydrochloride on the hypoxia-induced firing in the medial vestibular nucleus. Inoue, S., Yamanaka, T., Okamoto, H., Hosoi, H. Acta oto-laryngologica. Supplementum. (2004) [Pubmed]
  6. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Grassi, S., Pettorossi, V.E. Prog. Neurobiol. (2001) [Pubmed]
  7. Fos-defined activity in rat brainstem following centripetal acceleration. Kaufman, G.D., Anderson, J.H., Beitz, A.J. J. Neurosci. (1992) [Pubmed]
  8. Thiamine deficiency limits glucose utilization and glial proliferation in brain lesions of symptomatic rats. Sharp, F.R., Bolger, E., Evans, K. J. Cereb. Blood Flow Metab. (1982) [Pubmed]
  9. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors. Puyal, J., Grassi, S., Dieni, C., Frondaroli, A., Demêmes, D., Raymond, J., Pettorossi, V.E. J. Physiol. (Lond.) (2003) [Pubmed]
  10. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy. Yamanaka, T., Him, A., Cameron, S.A., Dutia, M.B. J. Physiol. (Lond.) (2000) [Pubmed]
  11. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. Camp, A.J., Callister, R.J., Brichta, A.M. J. Neurophysiol. (2006) [Pubmed]
  12. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Sans, N., Sans, A., Raymond, J. Eur. J. Neurosci. (1997) [Pubmed]
  13. Differential effects of bicuculline and muscimol microinjections into the vestibular nuclei on simian eye movements. Straube, A., Kurzan, R., Büttner, U. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1991) [Pubmed]
  14. Quantitative autoradiographic characterization of L-[3H] glutamate binding sites in rat vestibular nuclei. Touati, J., Raymond, J., Demêmes, D. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1989) [Pubmed]
  15. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. Wenzel, A., Fritschy, J.M., Mohler, H., Benke, D. J. Neurochem. (1997) [Pubmed]
  16. The synaptic activation of N-methyl-D-aspartate receptors in the rat medial vestibular nucleus. Kinney, G.A., Peterson, B.W., Slater, N.T. J. Neurophysiol. (1994) [Pubmed]
  17. FOS expression in the brainstem and cerebellum following phencyclidine and MK801. Näkki, R., Sharp, F.R., Sagar, S.M. J. Neurosci. Res. (1996) [Pubmed]
  18. Use of calcium-binding proteins to map inputs in vestibular nuclei of the gerbil. Kevetter, G.A., Leonard, R.B. J. Comp. Neurol. (1997) [Pubmed]
  19. Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. Bäurle, J., Vogten, H., Grüsser-Cornehls, U. J. Comp. Neurol. (1998) [Pubmed]
  20. Differential effect of injections of kainic acid into the prepositus and the vestibular nuclei of the cat. Godaux, E., Mettens, P., Cheron, G. J. Physiol. (Lond.) (1993) [Pubmed]
  21. Microiontophoresis of acetylcholine, histamine and their antagonists on neurones in the medial and lateral vestibular nuclei of the cat. Kirsten, E.B., Sharma, J.N. Neuropharmacology (1976) [Pubmed]
  22. Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Halberstadt, A.L., Balaban, C.D. Neuroscience (2003) [Pubmed]
  23. Effects of noradrenaline on the firing rate of vestibular neurons. Licata, F., Li Volsi, G., Maugeri, G., Ciranna, L., Santangelo, F. Neuroscience (1993) [Pubmed]
  24. Calcium-binding proteins map the postnatal development of rat vestibular nuclei and their vestibular and cerebellar projections. Puyal, J., Devau, G., Venteo, S., Sans, N., Raymond, J. J. Comp. Neurol. (2002) [Pubmed]
  25. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. Barmack, N.H., Qian, Z., Yoshimura, J. J. Comp. Neurol. (2000) [Pubmed]
  26. Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. Yates, B.J., Miller, A.D. J. Neurophysiol. (1994) [Pubmed]
  27. Modulation of the voltage-gated sodium- and calcium-dependent potassium channels in rat vestibular and facial nuclei after unilateral labyrinthectomy and facial nerve transsection: an in situ hybridization study. Patkó, T., Vassias, I., Vidal, P.P., De Waele, C. Neuroscience (2003) [Pubmed]
  28. Vestibular influences on CA1 neurons in the rat hippocampus: an electrophysiological study in vivo. Horii, A., Russell, N.A., Smith, P.F., Darlington, C.L., Bilkey, D.K. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (2004) [Pubmed]
  29. Measurement of 5-hydroxytryptamine release in the rat medial vestibular nucleus using in vivo microdialysis. Inoue, S., Kita, T., Yamanaka, T., Ogawa, Y., Nakashima, T., Hosoi, H. Neurosci. Lett. (2002) [Pubmed]
WikiGenes - Universities