The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

EGFR  -  epidermal growth factor receptor

Sus scrofa

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of EGFR


High impact information on EGFR

  • Substitution of these lysine residues with arginines resulted in a dramatic decrease in overall ubiquitination but preserved normal tyrosine phosphorylation of EGFR [5].
  • To elucidate the role of EGFR ubiquitination, tandem mass spectrometry was used to identify six distinct lysine residues within the kinase domain of the EGFR, which can be conjugated to ubiquitin following growth factor stimulation [5].
  • Taken together, these data provide direct evidence for the role of EGFR ubiquitination in receptor targeting to the lysosome and implicate Lys63-linked polyubiquitin chains in this sorting process [5].
  • The amino acid sequence of porcine protein II reported here sheds new light on the properties of a multigene protein family which includes the tyrosine kinase substrates of the sarc gene (p36) and of the EGF-receptor (p35) [6].
  • Moreover, transfection of a bacterial 14,15-epoxygenase established intracellular endogenous 14,15-EET biosynthesis in cultured cell systems, which allowed direct confirmation of involvement of EGFR transactivation in the endogenous 14,15-EET-mediated mitogenic signaling pathway [7].

Biological context of EGFR

  • The aim of our study was to determine EGF and EGFR immunoexpression in the uterine artery and its branches during the estrous cycle in the pig [8].
  • A significant decrease in the intensity of EGF and EGFR immunoreactivity was found in the middle luteal phase [8].
  • The highest intensity of EGF and EGFR immunoreaction in endothelial cells of the uterine artery was observed in the follicular phase [8].
  • Epidermal growth factor (EGF) and its receptor (EGFR) are expressed in many tissues, including reproductive organs, and is involved in angiogenesis, embryo implantation and development as well as in proliferation and differentiation of various cells [8].
  • We conclude that the restricted presence of the functional full-size receptor to the epithelial layer indicates a specific role during early embryonic development, whereas truncated EGF-R forms may potentially regulate contractions and blood flow in the oviduct [9].

Anatomical context of EGFR


Associations of EGFR with chemical compounds


Enzymatic interactions of EGFR


Regulatory relationships of EGFR


Other interactions of EGFR


Analytical, diagnostic and therapeutic context of EGFR


  1. High molecular mass forms of epidermal growth factor in pig uterine secretions. Brigstock, D.R., Kim, G.Y., Steffen, C.L., Liu, A., Vegunta, R.K., Ismail, N.H. J. Reprod. Fertil. (1996) [Pubmed]
  2. Epidermal growth factor receptor up-regulation is associated with lung growth after lobectomy. Kaza, A.K., Kron, I.L., Long, S.M., Fiser, S.M., Stevens, P.M., Kern, J.A., Tribble, C.G., Laubach, V.E. Ann. Thorac. Surg. (2001) [Pubmed]
  3. Immunohistochemical analysis of EGF-R in gastric mucosa in portal hypertensive with cirrhosis. Yang, Z. J. Tongji Med. Univ. (1997) [Pubmed]
  4. Evidence that thyroid growth promoting activity of immunoglobulin preparations is due to contamination with EGF. Gärtner, R., Tsavella, C., Bechtner, G., Greil, W. Acta endocrinologica. Supplementum. (1987) [Pubmed]
  5. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S., Sorkin, A. Mol. Cell (2006) [Pubmed]
  6. The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure Ca2+-modulated lipid binding proteins. Weber, K., Johnsson, N., Plessmann, U., Van, P.N., Söling, H.D., Ampe, C., Vandekerckhove, J. EMBO J. (1987) [Pubmed]
  7. Heparin-binding EGF-like growth factor mediates the biological effects of P450 arachidonate epoxygenase metabolites in epithelial cells. Chen, J.K., Capdevila, J., Harris, R.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Epidermal growth factor and epidermal growth factor receptor immunoreactivity in the endothelial cells of the uterine artery and its branches during different stages of the estrous cycle in the pig. Andronowska, A., Postek, A., Doboszy??ska, T. Polish journal of veterinary sciences. (2006) [Pubmed]
  9. Estrous cycle specific immunolocalization of different domains of the epidermal growth factor receptor in the porcine oviduct. Steffl, M., Schweiger, M., Amselgruber, W.M. Endocrine (2005) [Pubmed]
  10. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea. Kikuno, S., Taguchi, K., Iwamoto, N., Yamano, S., Cho, A.K., Froines, J.R., Kumagai, Y. Toxicol. Appl. Pharmacol. (2006) [Pubmed]
  11. Epoxyeicosatrienoic acids and their sulfonimide derivatives stimulate tyrosine phosphorylation and induce mitogenesis in renal epithelial cells. Chen, J.K., Falck, J.R., Reddy, K.M., Capdevila, J., Harris, R.C. J. Biol. Chem. (1998) [Pubmed]
  12. c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. Chen, K., Vita, J.A., Berk, B.C., Keaney, J.F. J. Biol. Chem. (2001) [Pubmed]
  13. Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Liu, J., Liang, M., Liu, L., Malhotra, D., Xie, Z., Shapiro, J.I. Kidney Int. (2005) [Pubmed]
  14. Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells. Kuwada, S.K., Lund, K.A., Li, X.F., Cliften, P., Amsler, K., Opresko, L.K., Wiley, H.S. Am. J. Physiol. (1998) [Pubmed]
  15. Characterization of the epidermal growth factor receptor in preimplantation pig conceptuses. Zhang, Y., Paria, B.C., Dey, S.K., Davis, D.L. Dev. Biol. (1992) [Pubmed]
  16. EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Dong, J., Ramachandiran, S., Tikoo, K., Jia, Z., Lau, S.S., Monks, T.J. Am. J. Physiol. Renal Physiol. (2004) [Pubmed]
  17. Mapping and microsatellite marker development for the porcine leukemia inhibitory factor receptor (LIFR) and epidermal growth factor receptor (EGFR) genes. Spötter, A., Drögemüller, C., Kuiper, H., Brenig, B., Leeb, T., Distl, O. Cytogenet. Genome Res. (2002) [Pubmed]
  18. Epidermal growth factor-receptor tyrosine kinase activity regulates expansion of porcine oocyte-cumulus cell complexes in vitro. Prochazka, R., Kalab, P., Nagyova, E. Biol. Reprod. (2003) [Pubmed]
  19. Expression of the genes for TGF alpha, EGF and the EGF receptor during early pig development. Vaughan, T.J., James, P.S., Pascall, J.C., Brown, K.D. Development (1992) [Pubmed]
  20. Growth factor staining patterns in the pig retina following retinal laser photocoagulation. Xiao, M., McLeod, D., Cranley, J., Williams, G., Boulton, M. The British journal of ophthalmology. (1999) [Pubmed]
  21. Human malignant melanoma. A genetic disease? Kraehn, G.M., Schartl, M., Peter, R.U. Cancer (1995) [Pubmed]
  22. Effects of an environmental endocrine disruptor on fetal development, estrogen receptor(alpha) and epidermal growth factor receptor expression in the porcine male genital tract. Barthold, J.S., Kryger, J.V., Derusha, A.M., Duel, B.P., Jednak, R., Skafar, D.F. J. Urol. (1999) [Pubmed]
  23. Subglottic injury, gastric juice, corticosteroids, and peptide growth factors in a porcine model. Yellon, R.F., Szeremeta, W., Grandis, J.R., Diguisseppe, P., Dickman, P.S. Laryngoscope (1998) [Pubmed]
  24. Proto-oncogene of genomic DNA, related to the human epidermal growth factor receptor (EGFR) gene, from clinically normal domestic animals. Kai, K., Tateyama, S., Miyoshi, N., Yamaguchi, R., Uchida, K., Rostami, M. J. Vet. Med. Sci. (1993) [Pubmed]
WikiGenes - Universities