The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Parotid Gland

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Parotid Gland


Psychiatry related information on Parotid Gland


High impact information on Parotid Gland


Chemical compound and disease context of Parotid Gland


Biological context of Parotid Gland


Anatomical context of Parotid Gland


Associations of Parotid Gland with chemical compounds


Gene context of Parotid Gland

  • Mice with targeted disruptions of the Nhe1, Nhe2, and Nhe3 genes were used to study the in vivo functions of these exchangers in parotid glands [31].
  • Similarly, c-Jun amino-terminal kinase activation is suppressed in vivo in gamma-irradiated parotid glands from PKCdelta(-/-) mice [32].
  • In this report, we demonstrated that Raf-1 protein kinase activity in the mouse parotid glands was induced by chronic isoproterenol administration in whole animals [33].
  • Surprisingly, Kcnn4 channels appear to play no required role in fluid secretion and regulatory volume decrease in the parotid gland [34].
  • In contrast to the dramatic effect of p53 in parotid gland transformation, p53 loss has little effect on the rate or stochastic appearance of mammary tumors [19].

Analytical, diagnostic and therapeutic context of Parotid Gland


  1. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Geurts, J.M., Schoenmakers, E.F., Röijer, E., Stenman, G., Van de Ven, W.J. Cancer Res. (1997) [Pubmed]
  2. Regulation of proline-rich protein and alpha-amylase genes in parotid-hepatoma hybrid cells. Wright, P.S., Carlson, D.M. FASEB J. (1988) [Pubmed]
  3. Isoproterenol-mediated parotid gland hypertrophy is inhibited by effectors of 4 beta-galactosyltransferase. Humphreys-Beher, M.G., Schneyer, C.A., Kidd, V.J., Marchase, R.B. J. Biol. Chem. (1987) [Pubmed]
  4. Dissemination of a Sjögren's syndrome-associated extranodal marginal-zone B cell lymphoma: circulating lymphoma cells and invariant mutation pattern of nodal Ig heavy- and light-chain variable-region gene rearrangements. Hansen, A., Reiter, K., Pruss, A., Loddenkemper, C., Kaufmann, O., Jacobi, A.M., Scholze, J., Lipsky, P.E., Dörner, T. Arthritis Rheum. (2006) [Pubmed]
  5. Hypouricemia and malignant neoplasms. A new case of xanthinuria. Mitnick, P.D., Beck, L.H. Arch. Intern. Med. (1979) [Pubmed]
  6. Changes in patterns of feeding activity, parotid secretory enzymes and plasma corticosterone in developing rats. Redman, R.S., Sreebny, L.M. J. Nutr. (1976) [Pubmed]
  7. Acquisition of cholinergic and peptidergic properties by sympathetic innervation of rat sweat glands requires interaction with normal target. Schotzinger, R.J., Landis, S.C. Neuron (1990) [Pubmed]
  8. Electron microprobe analysis of human labial gland secretory granules in cystic fibrosis. Izutsu, K., Johnson, D., Schubert, M., Wang, E., Ramsey, B., Tamarin, A., Truelove, E., Ensign, W., Young, M. J. Clin. Invest. (1985) [Pubmed]
  9. Constitutive and regulated secretion of secretory leukocyte proteinase inhibitor by human intestinal epithelial cells. Si-Tahar, M., Merlin, D., Sitaraman, S., Madara, J.L. Gastroenterology (2000) [Pubmed]
  10. Regulation of terminal differentiation of zymogenic cells by transforming growth factor alpha in transgenic mice. Bockman, D.E., Sharp, R., Merlino, G. Gastroenterology (1995) [Pubmed]
  11. Partial remission of parotid gland carcinoma after goserelin. van der Hulst, R.W., van Krieken, J.H., van der Kwast, T.H., Gerritsen, J.J., Baatenburg de Jong, R.J., Lycklama à Nijeholt, A.A., Meinders, A.E. Lancet (1994) [Pubmed]
  12. Vitamin D and parotid gland function in the rat. Peterfy, C., Tenenhouse, A., Yu, E. J. Physiol. (Lond.) (1988) [Pubmed]
  13. Do parotid duct abnormalities occur in patients with chronic alcoholic pancreatitis? Sagatelian, M.A., Fravel, J., Gallo, S.H., Makk, L.J., Looney, S.W., Wright, R.A. Am. J. Gastroenterol. (1998) [Pubmed]
  14. Activation of SH2-containing proteins by insulin in proliferating mouse parotid gland acinar cells. Wang, P.L., Purushotham, K.R., Humphreys-Beher, M.G. Proc. Soc. Exp. Biol. Med. (1994) [Pubmed]
  15. Modification of human parotid saliva proteins by oral streptococcus sanguis. Choih, S., Smith, Q.T., Schachtele, C.F. J. Dent. Res. (1979) [Pubmed]
  16. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Mehansho, H., Hagerman, A., Clements, S., Butler, L., Rogler, J., Carlson, D.M. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  17. cDNA cloning and chromosomal localization (4q11-13) of a gene for statherin, a regulator of calcium in saliva. Sabatini, L.M., Carlock, L.R., Johnson, G.W., Azen, E.A. Am. J. Hum. Genet. (1987) [Pubmed]
  18. Nucleotide sequence analysis of a proline-rich protein cDNA and peptide homologies of rat and human proline-rich proteins. Ziemer, M.A., Swain, W.F., Rutter, W.J., Clements, S., Ann, D.K., Carlson, D.M. J. Biol. Chem. (1984) [Pubmed]
  19. Inactivation of p53 tumor suppressor gene acts synergistically with c-neu oncogene in salivary gland tumorigenesis. Brodie, S.G., Xu, X., Li, C., Kuo, A., Leder, P., Deng, C.X. Oncogene (2001) [Pubmed]
  20. The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction. Ishikawa, Y., Iida, H., Ishida, H. Mol. Pharmacol. (2002) [Pubmed]
  21. Retention of amylase in the secretory granules of parotid gland after extensive release of Ca++ by ionophore A-23187. Flashner, Y., Schramm, M. J. Cell Biol. (1977) [Pubmed]
  22. Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Riedel, D., Antonin, W., Fernandez-Chacon, R., Alvarez de Toledo, G., Jo, T., Geppert, M., Valentijn, J.A., Valentijn, K., Jamieson, J.D., Südhof, T.C., Jahn, R. Mol. Cell. Biol. (2002) [Pubmed]
  23. Induction of proline-rich glycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins. Mehansho, H., Clements, S., Sheares, B.T., Smith, S., Carlson, D.M. J. Biol. Chem. (1985) [Pubmed]
  24. Characterization of common salivary protein 1, a product of rat submandibular, sublingual, and parotid glands. Girard, L.R., Castle, A.M., Hand, A.R., Castle, J.D., Mirels, L. J. Biol. Chem. (1993) [Pubmed]
  25. Muscarinic acetylcholine receptor structure in acinar cells of mammalian exocrine glands. Hootman, S.R., Picado-Leonard, T.M., Burnham, D.B. J. Biol. Chem. (1985) [Pubmed]
  26. Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward-directed H+ pump activity. Arvan, P., Castle, J.D. J. Cell Biol. (1986) [Pubmed]
  27. Endocytic pathways at the lateral and basal cell surfaces of exocrine acinar cells. Oliver, C. J. Cell Biol. (1982) [Pubmed]
  28. A Ca2+-linked increase in coupled cAMP synthesis and hydrolysis is an early event in cholinergic and beta-adrenergic stimulation of parotid secretion. Deeg, M.A., Graeff, R.M., Walseth, T.F., Goldberg, N.D. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  29. A comparative study on the protection profile of lidocaine, amifostine, and pilocarpin on the parotid gland during radiotherapy. Hakim, S.G., Kosmehl, H., Lauer, I., Nadrowitz, R., Wedel, T., Sieg, P. Cancer Res. (2005) [Pubmed]
  30. ATP-dependent calcium transport in rat parotid basolateral membrane vesicles. Modulation by agents which elevate cyclic AMP. Helman, J., Kuyatt, B.L., Takuma, T., Seligmann, B., Baum, B.J. J. Biol. Chem. (1986) [Pubmed]
  31. Defective fluid secretion and NaCl absorption in the parotid glands of Na+/H+ exchanger-deficient mice. Park, K., Evans, R.L., Watson, G.E., Nehrke, K., Richardson, L., Bell, S.M., Schultheis, P.J., Hand, A.R., Shull, G.E., Melvin, J.E. J. Biol. Chem. (2001) [Pubmed]
  32. Suppression of apoptosis in the protein kinase Cdelta null mouse in vivo. Humphries, M.J., Limesand, K.H., Schneider, J.C., Nakayama, K.I., Anderson, S.M., Reyland, M.E. J. Biol. Chem. (2006) [Pubmed]
  33. Oncogenic raf-1 induces the expression of non-histone chromosomal architectural protein HMGI-C via a p44/p42 mitogen-activated protein kinase-dependent pathway in salivary epithelial cells. Li, D., Lin, H.H., McMahon, M., Ma, H., Ann, D.K. J. Biol. Chem. (1997) [Pubmed]
  34. Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. Begenisich, T., Nakamoto, T., Ovitt, C.E., Nehrke, K., Brugnara, C., Alper, S.L., Melvin, J.E. J. Biol. Chem. (2004) [Pubmed]
  35. Sympathetic denervation impairs agonist-stimulated phosphatidylinositol metabolism in rat parotid glands. Downes, C.P., Dibner, M.D., Hanley, M.R. Biochem. J. (1983) [Pubmed]
  36. Radioimmunoassay of carbonic anhydrase VI in saliva and sheep tissues. Fernley, R.T., Wright, R.D., Coghlan, J.P. Biochem. J. (1991) [Pubmed]
  37. Localization of catalytic and regulatory subunits of cyclic AMP-dependent protein kinases in mitochondria from various rat tissues. Schwoch, G., Trinczek, B., Bode, C. Biochem. J. (1990) [Pubmed]
  38. Calcitonin gene-related peptide in rat salivary glands: neuronal localization, depletion upon nerve stimulation, and effects on salivation in relation to substance P. Ekström, J., Ekman, R., Håkanson, R., Sjögren, S., Sundler, F. Neuroscience (1988) [Pubmed]
WikiGenes - Universities