The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Lymphocytes, Null

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lymphocytes, Null

 

High impact information on Lymphocytes, Null

  • Significantly, hypoxia-induced HIF1alpha expression was completely inhibited in Siah1a/2 null cells, yet could be rescued upon inhibition of PHD3 by RNAi [6].
  • Compared with wild-type MEFs, p16Ink4a-null MEFs exhibited an increased rate of immortalization, although this rate was less than that observed previously for cells null for Ink4a/Arf, p19Arf or p53 (refs 4, 5) [7].
  • When the class II null cell line 721.174 was transfected with class II DR3 genes, DR molecules were produced in normal amounts [8].
  • Thus, cad and gadd45 are the only proposed targets of c-Myc that may contribute to the dramatic slow growth phenotype of c-myc null cells [9].
  • c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets [9].
 

Chemical compound and disease context of Lymphocytes, Null

 

Biological context of Lymphocytes, Null

 

Anatomical context of Lymphocytes, Null

 

Associations of Lymphocytes, Null with chemical compounds

 

Gene context of Lymphocytes, Null

  • Consistent with these data, cyclin G null cells have both Mdm2 that is hyperphosphorylated at T216 and markedly higher levels of p53 protein when compared to wild-type cells [30].
  • We show that nuclear beta-catenin expression is constitutively elevated in PTEN null cells and this elevated expression is reduced upon reexpression of PTEN [31].
  • Finally, Rb removal induced no DNA synthesis even in pocket-protein null cells [32].
  • Cells homozygous mutant for mRpL12 have reduced mitochondrial activity, and exhibit growth defects that are very similar to those of cdk4 null cells [33].
  • In addition, numerous aggregates of myosin heavy chain accumulate in the sqh null cells [34].
 

Analytical, diagnostic and therapeutic context of Lymphocytes, Null

References

  1. Differences in purine metabolizing enzyme activities in human leukemia T-cell, B-cell and null cell lines. Tritsch, G.L., Minowada, J. J. Natl. Cancer Inst. (1978) [Pubmed]
  2. Elevated adenosine deaminase and purine nucleoside phosphorylase activity in peripheral blood null lymphocytes from patients with acquired immune deficiency syndrome. Murray, J.L., Loftin, K.C., Munn, C.G., Reuben, J.M., Mansell, P.W., Hersh, E.M. Blood (1985) [Pubmed]
  3. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Kwiatkowski, D.J., Zhang, H., Bandura, J.L., Heiberger, K.M., Glogauer, M., el-Hashemite, N., Onda, H. Hum. Mol. Genet. (2002) [Pubmed]
  4. Uridine kinase activities in normal and neoplastic lymphoid cells. Greenberg, N., Schumm, D.E., Hurtubise, P.E., Webb, T.E. Cancer Res. (1977) [Pubmed]
  5. Mammalian 3-methyladenine DNA glycosylase protects against the toxicity and clastogenicity of certain chemotherapeutic DNA cross-linking agents. Allan, J.M., Engelward, B.P., Dreslin, A.J., Wyatt, M.D., Tomasz, M., Samson, L.D. Cancer Res. (1998) [Pubmed]
  6. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Nakayama, K., Frew, I.J., Hagensen, M., Skals, M., Habelhah, H., Bhoumik, A., Kadoya, T., Erdjument-Bromage, H., Tempst, P., Frappell, P.B., Bowtell, D.D., Ronai, Z. Cell (2004) [Pubmed]
  7. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Sharpless, N.E., Bardeesy, N., Lee, K.H., Carrasco, D., Castrillon, D.H., Aguirre, A.J., Wu, E.A., Horner, J.W., DePinho, R.A. Nature (2001) [Pubmed]
  8. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Sette, A., Ceman, S., Kubo, R.T., Sakaguchi, K., Appella, E., Hunt, D.F., Davis, T.A., Michel, H., Shabanowitz, J., Rudersdorf, R. Science (1992) [Pubmed]
  9. c-myc null cells misregulate cad and gadd45 but not other proposed c-Myc targets. Bush, A., Mateyak, M., Dugan, K., Obaya, A., Adachi, S., Sedivy, J., Cole, M. Genes Dev. (1998) [Pubmed]
  10. Double-blind placebo controlled crossover evaluation of levamisole in rheumatoid arthritis. Miller, B., de Merieux, P., Srinivasan, R., Clements, P., Fan, P., Levy, J., Paulus, H.E. Arthritis Rheum. (1980) [Pubmed]
  11. Analysis of pituitary hormones and chromogranin A mRNAs in null cell adenomas, oncocytomas, and gonadotroph adenomas by in situ hybridization. Lloyd, R.V., Jin, L., Fields, K., Chandler, W.F., Horvath, E., Stefaneanu, L., Kovacs, K. Am. J. Pathol. (1991) [Pubmed]
  12. Gonadotropin secretion in vitro by human pituitary null cell adenomas and oncocytomas. Asa, S.L., Gerrie, B.M., Singer, W., Horvath, E., Kovacs, K., Smyth, H.S. J. Clin. Endocrinol. Metab. (1986) [Pubmed]
  13. Differentiation of human pituitary adenomas determines the pattern of chromogranin/secretogranin messenger ribonucleic acid expression. Jin, L., Chandler, W.F., Smart, J.B., England, B.G., Lloyd, R.V. J. Clin. Endocrinol. Metab. (1993) [Pubmed]
  14. Dopamine receptors in immunohistochemically characterized null cell adenomas and normal human pituitaries. Lloyd, R.V., Anagnostou, D., Chandler, W.F. Mod. Pathol. (1988) [Pubmed]
  15. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Peters, A.H., Kubicek, S., Mechtler, K., O'Sullivan, R.J., Derijck, A.A., Perez-Burgos, L., Kohlmaier, A., Opravil, S., Tachibana, M., Shinkai, Y., Martens, J.H., Jenuwein, T. Mol. Cell (2003) [Pubmed]
  16. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering. Scharenberg, A.M., Lin, S., Cuenod, B., Yamamura, H., Kinet, J.P. EMBO J. (1995) [Pubmed]
  17. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Soucie, E.L., Annis, M.G., Sedivy, J., Filmus, J., Leber, B., Andrews, D.W., Penn, L.Z. Mol. Cell. Biol. (2001) [Pubmed]
  18. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Davey, S., Han, C.S., Ramer, S.A., Klassen, J.C., Jacobson, A., Eisenberger, A., Hopkins, K.M., Lieberman, H.B., Freyer, G.A. Mol. Cell. Biol. (1998) [Pubmed]
  19. Radiation-induced delayed cell death in a hypomorphic Artemis cell line. Evans, P.M., Woodbine, L., Riballo, E., Gennery, A.R., Hubank, M., Jeggo, P.A. Hum. Mol. Genet. (2006) [Pubmed]
  20. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., Mortensen, R.M. Mol. Cell (1999) [Pubmed]
  21. Phytohemagglutinin-induced differentiation and blastogenesis of precursor T cells from mouse bone marrow. Press, O.W., Rosse, C., Clagett, J. J. Exp. Med. (1977) [Pubmed]
  22. A selective culture system for generating terminal deoxynucleotidyl transferase-positive (TdT+) lymphoid precursor cells in vitro. I. Description of the culture system. Hayashi, J., Medlock, E.S., Goldschneider, I. J. Exp. Med. (1984) [Pubmed]
  23. Deficiency of a surface membrane glycoprotein (Mo1) in man. Dana, N., Todd, R.F., Pitt, J., Springer, T.A., Arnaout, M.A. J. Clin. Invest. (1984) [Pubmed]
  24. Thymosin-induced reduction of "null cells" in peripheral-blood lymphocytes of patients with systemic lupus erythematosus. Scheinberg, M.A., Cathcart, E.S., Goldstein, A.L. Lancet (1975) [Pubmed]
  25. Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Park, S.W., Li, G., Lin, Y.P., Barrero, M.J., Ge, K., Roeder, R.G., Wei, L.N. Mol. Cell (2005) [Pubmed]
  26. Compensatory prostaglandin E2 biosynthesis in cyclooxygenase 1 or 2 null cells. Kirtikara, K., Morham, S.G., Raghow, R., Laulederkind, S.J., Kanekura, T., Goorha, S., Ballou, L.R. J. Exp. Med. (1998) [Pubmed]
  27. Ecto-adenosine triphosphatase deficiency in cultured human T and null leukemic lymphocytes. A biochemical basis for thymidine sensitivity. Fox, R.M., Piddington, S.K., Tripp, E.H., Tattersall, M.H. J. Clin. Invest. (1981) [Pubmed]
  28. Rac regulation of chemotaxis and morphogenesis in Dictyostelium. Park, K.C., Rivero, F., Meili, R., Lee, S., Apone, F., Firtel, R.A. EMBO J. (2004) [Pubmed]
  29. Ca(2+) signalling is not required for chemotaxis in Dictyostelium. Traynor, D., Milne, J.L., Insall, R.H., Kay, R.R. EMBO J. (2000) [Pubmed]
  30. Cyclin G recruits PP2A to dephosphorylate Mdm2. Okamoto, K., Li, H., Jensen, M.R., Zhang, T., Taya, Y., Thorgeirsson, S.S., Prives, C. Mol. Cell (2002) [Pubmed]
  31. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. Persad, S., Troussard, A.A., McPhee, T.R., Mulholland, D.J., Dedhar, S. J. Cell Biol. (2001) [Pubmed]
  32. A pRb-independent mechanism preserves the postmitotic state in terminally differentiated skeletal muscle cells. Camarda, G., Siepi, F., Pajalunga, D., Bernardini, C., Rossi, R., Montecucco, A., Meccia, E., Crescenzi, M. J. Cell Biol. (2004) [Pubmed]
  33. The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. Frei, C., Galloni, M., Hafen, E., Edgar, B.A. EMBO J. (2005) [Pubmed]
  34. Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. Jordan, P., Karess, R. J. Cell Biol. (1997) [Pubmed]
  35. Null cells in the mouse possess membrane immunoglobulins. Warr, G.W., Lee, J.C., Marchalonis, J.J. J. Immunol. (1978) [Pubmed]
  36. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Lo, C.M., Buxton, D.B., Chua, G.C., Dembo, M., Adelstein, R.S., Wang, Y.L. Mol. Biol. Cell (2004) [Pubmed]
  37. Properties of a surface antigen expressed on activated human thymus-derived lymphocytes. Udey, M.C., Jendrisak, M.D., Parker, C.W. J. Immunol. (1982) [Pubmed]
  38. Patterns in Dictyostelium discoideum: the role of myosin II in the transition from the unicellular to the multicellular phase. Eliott, S., Joss, G.H., Spudich, A., Williams, K.L. J. Cell. Sci. (1993) [Pubmed]
  39. Transformation-selective apoptotic program triggered by farnesyltransferase inhibitors requires Bin1. DuHadaway, J.B., Du, W., Donover, S., Baker, J., Liu, A.X., Sharp, D.M., Muller, A.J., Prendergast, G.C. Oncogene (2003) [Pubmed]
 
WikiGenes - Universities