The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GLR1  -  glutathione-disulfide reductase GLR1

Saccharomyces cerevisiae S288c

Synonyms: GR, GRase, Glutathione reductase, LPG17W, YPL091W
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GLR1

 

High impact information on GLR1

 

Chemical compound and disease context of GLR1

 

Biological context of GLR1

 

Anatomical context of GLR1

  • Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria [16].
  • Upon incubation of SBuG (0.25-1.0 mM) with GR from either yeast or bovine intestinal mucosa in the presence of NADPH (0.20 mM), enzyme activity was lost in a time- and concentration-dependent manner [17].
  • Transport rates of riboflavin were increased in severely and moderately deficient cells compared with cells cultured in physiologic medium; this increase was not sufficient to prevent intracellular depletion of riboflavin, as judged by glutathione reductase activity and intracellular concentrations of glutathione [18].
  • The adaptive mechanisms examined in this study included the coordinate increase in the activities of Cu,Zn-superoxide dismutase (up to five-fold), glutathione reductase (up to 1.7-fold), and plasma membrane H+-ATPase (up to three-fold) [19].
  • Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments [20].
 

Associations of GLR1 with chemical compounds

 

Other interactions of GLR1

 

Analytical, diagnostic and therapeutic context of GLR1

References

  1. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Muller, E.G. Mol. Biol. Cell (1996) [Pubmed]
  2. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Pinson, B., Sagot, I., Daignan-Fornier, B. Mol. Microbiol. (2000) [Pubmed]
  3. The role of glutathione in yeast dehydration tolerance. Espindola, A.d.e. .S., Gomes, D.S., Panek, A.D., Eleutherio, E.C. Cryobiology (2003) [Pubmed]
  4. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Basu, U., Southron, J.L., Stephens, J.L., Taylor, G.J. Mol. Genet. Genomics (2004) [Pubmed]
  5. High-yield extraction and purification of glutathione reductase from baker's yeast. Tsai, Y.C., Yang, T.Y., Cheng, S.W., Li, S.N., Wang, Y.J. Prep. Biochem. (1991) [Pubmed]
  6. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Holmgren, A. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  7. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. Tanaka, T., Izawa, S., Inoue, Y. J. Biol. Chem. (2005) [Pubmed]
  8. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. Outten, C.E., Culotta, V.C. J. Biol. Chem. (2004) [Pubmed]
  9. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. Wong, C.M., Siu, K.L., Jin, D.Y. J. Biol. Chem. (2004) [Pubmed]
  10. Electrostatic control of the isoalloxazine environment in the two-electron reduced states of yeast glutathione reductase. Picaud, T., Desbois, A. J. Biol. Chem. (2002) [Pubmed]
  11. Isolation, expression, and regulation of the pgr1(+) gene encoding glutathione reductase absolutely required for the growth of Schizosaccharomyces pombe. Lee, J., Dawes, I.W., Roe, J.H. J. Biol. Chem. (1997) [Pubmed]
  12. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Grant, C.M., Collinson, L.P., Roe, J.H., Dawes, I.W. Mol. Microbiol. (1996) [Pubmed]
  13. Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Collinson, L.P., Dawes, I.W. Gene (1995) [Pubmed]
  14. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. Trotter, E.W., Grant, C.M. EMBO Rep. (2003) [Pubmed]
  15. Predissociated dimers and molten globule monomers in the equilibrium unfolding of yeast glutathione reductase. Louzada, P.R., Sebollela, A., Scaramello, M.E., Ferreira, S.T. Biophys. J. (2003) [Pubmed]
  16. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Trotter, E.W., Grant, C.M. Eukaryotic Cell (2005) [Pubmed]
  17. Identification of S-(n-butylcarbamoyl)glutathione, a reactive carbamoylating metabolite of tolbutamide in the rat, and evaluation of its inhibitory effects on glutathione reductase in vitro. Guan, X., Davis, M.R., Tang, C., Jochheim, C.M., Jin, L., Baillie, T.A. Chem. Res. Toxicol. (1999) [Pubmed]
  18. Oxidative folding of interleukin-2 is impaired in flavin-deficient jurkat cells, causing intracellular accumulation of interleukin-2 and increased expression of stress response genes. Camporeale, G., Zempleni, J. J. Nutr. (2003) [Pubmed]
  19. Modification of plasma membrane lipid order and H+-ATPase activity as part of the response of Saccharomyces cerevisiae to cultivation under mild and high copper stress. Fernandes, A.R., Prieto, M., Sá-Correia, I. Arch. Microbiol. (2000) [Pubmed]
  20. Purification and immunological studies of glutathione reductase from rat liver. Evidence for an antigenic determinant at the nucleotide-binding domain of the enzyme. Carlberg, I., Altmejd, B., Mannervik, B. Biochim. Biophys. Acta (1981) [Pubmed]
  21. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. Moreira dos Santos, M., Thygesen, G., Kötter, P., Olsson, L., Nielsen, J. FEMS Yeast Res. (2003) [Pubmed]
  22. Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Outten, C.E., Falk, R.L., Culotta, V.C. Biochem. J. (2005) [Pubmed]
  23. Characterization of the inhibition effect induced by nickel on glucose-6-phosphate dehydrogenase and glutathione reductase. Cartañá, J., Arola, L., Romeu, A. Enzyme (1989) [Pubmed]
  24. Pleiotropic glucose repression-resistant mutation in Saccharomyces carlesbergensis. Michels, C.A., Romanowski, A. J. Bacteriol. (1980) [Pubmed]
  25. The sequence of amino acid residues around the oxidation-reduction active disulfide in yeast glutathione reductase. Jones, E.T., Williams, C.H. J. Biol. Chem. (1975) [Pubmed]
  26. Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. Evans, M.V., Turton, H.E., Grant, C.M., Dawes, I.W. J. Bacteriol. (1998) [Pubmed]
  27. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V., Dawes, I.W. FEMS Yeast Res. (2005) [Pubmed]
  28. Electropulsation as an alternative method for protein extraction from yeast. Ganeva, V., Galutzov, B. FEMS Microbiol. Lett. (1999) [Pubmed]
  29. Inhibition of yeast-to-mycelium conversion of Candida albicans by conjugated styryl ketones. Manavathu, E., Duncan, C., Porte, Q., Gunasekaran, M. Mycopathologia (1996) [Pubmed]
  30. Acid- and pressure-induced (un)folding of yeast glutathione reductase: competition between protein oligomerization and aggregation. Morais, A.C., Chapeaurouge, A., Ferreira, S.T. Int. J. Biochem. Cell Biol. (2005) [Pubmed]
  31. Affinity chromatography of glutathione reductase: bound by immobilized GSSG, eluted by NADPH. Danner, J., Lenhoff, H.M., Heagy, W. Anal. Biochem. (1977) [Pubmed]
  32. Peroxide modification of monoalkylated glutathione reductase. Stabilization of an active-site cysteine-sulfenic acid. Miller, H., Claiborne, A. J. Biol. Chem. (1991) [Pubmed]
 
WikiGenes - Universities